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Abstract. Gravitational redshift is discussed in the context of quantum photons propagating in curved
spacetime. A brief introduction to modelling realistic photons is first presented and the effect of gravity on
the spectrum computed for photons largely confined along the direction of propagation. It is then shown that
redshift-induced transformations on photon operators with sharp momenta are not unitary, while a unitary
transformation can be constructed for realistic photons with finite bandwidth. The unitary transformation
obtained is then characterized as a multimode mixing operation, which is a generalized rotation of the
Hilbert-space basis. Finally, applications of these results are discussed with focus on performance of
quantum communication protocols, exploitation of the effects for quantum metrology and sensing, as well
as potential for tests of fundamental science.

Introduction
Gravitational redshift is one of the main predictions of general relativity [1, 2, 3, 4]. In general it occurs
when two observers, that exchange photons or pulses of light, are located in a curved spacetime and
are subject to different local gravitational potentials. Light signals sent by the source at a given initial
frequency are detected by the receiver with a different frequency as measured locally. More than one
century after the formulation of the theory [1, 5], gravitational redshift has been unequivocally established
by experiments on Earth [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] as well as via astrophysical observations
[17, 18, 19, 20, 21, 22, 23, 24, 25]. Different proposals have now been put forward for its exploitation
in astrophysics [26], for quantum information related tasks [27], and for testing novel and fundamental
theories of Nature [28]. Gravitational redshift remains to date an interesting and intriguing physical
phenomenon with applications to many fields of physics.

Classical gravitational redshift, in the sense of a theory where matter is classical, can be well
understood already from fundamental principles. In particular, the Einstein Equivalence Principle
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(EEP) implies that a nontrivial redshift between the frequencies of two observers due to a difference
in the gravitational potential at each location should be expected [1, 29, 4]. While the effect has been
experimentally measured, there has been some debate on the interpretation of the nature of the effects
itself. In particular, the question that can be asked is if the effect is witnessed by the photon during
propagation, or it is due to a mismatch in the basic properties of the measuring devices [30, 31]. Here
we will consider that it is the reception and measurement of the photon that allows the experimenter to
detect the effect and we do not participate in the debate that, although interesting conceptually, remains
out of the scope of this work.

Given the success of general relativity in explaining gravitational redshift, it is natural to ask the
question: how does the gravitational redshift affect realistic photons, that is, quantum excitations of the
electromagnetic field with a finite bandwidth and extension? Seemingly straightforward and therefore
easy to answer, this question has not yet been addressed systematically. This is the current state of the art
regardless of the fact that such question is of foundational interest since we do not have a comprehensive
theory of Nature that naturally accounts for the quantum and relativistic features of physical systems.
The problem of unifying general relativity and quantum mechanics has been tackled in the past century
leading to a variety of different theories [32], such as String Theory [33, 34] or Loop Quantum Gravity
[35], each with its own varying degree of success. Nevertheless, recent developments in the field of
quantum information [36], and relativistic quantum information in particular [37], have fuelled novel
approaches to the study of physics at the overlap of general relativity and quantum mechanics without the
need for a complete Theory of Everything. Many new models and experimental proposals are now being
put forward to deepen our understanding of this key area of physics: these range from collapse models
[38] and gravitationally induced decoherence of a quantum state [39, 40] to testing the quantum nature of
gravity with tabletop experiments [41] or to modelling spacetime as a quantum channel for propagating
quantum systems [42, 43, 44, 45, 46, 47], from stochastic gravity [48] and semiclassical approaches to
self gravitation of quantum systems [49] to gravitational quantum time dilation [50, 51] and to developing
setups geared at detecting the quantumness of gravity [52, 53, 54] or testing gravitationally-induced effects
on the interferometric visibility [55, 56].

In this work we review an approach recently developed to answer the question of gravitational redshift
affecting the quantum state of light [43, 44, 57, 58, 59]. So far, the idea has been to model the photon as
a wavepacket of a quantum field that propagates in curved spacetime and to obtain a relation between
the wavepacket generated by the sender, usually called Alice, and the one detected by the receiver,
usually called Bob. The transformation of the wavepackets can be interpreted as a transformation of
the mode structure of the field, which in turn can be seen as a change of basis in the Hilbert space of
the photon. Gravitational redshift can be therefore reinterpreted as a unitary rotation of the Hilbert space
or, equivalently, as a multimode mixing operation on the field operators [60]. This latter point of view
naturally connects the predicted transformation to the field of quantum optics [61], where multimode
mixing is a common passive operation between modes of light (i.e., one that preserves the total number
of excitations).

We extend the original approach [43], which is founded on a simplified 1 + 1-dimensional version of
the realistic 3 + 1-dimensional setup. In the original effort, a toy model was developed in order to obtain
the wavepacket transformation without solving complicated equations. Here we show that the approach
proposed can be generalized to a 3 + 1 scenario and can be therefore justified by properly modelling
realistic photon propagation in the full theory. The main conclusion is that realistic photons that are
strongly confined along the direction of propagation can be effectively modelled as 1-dimensional photons
with only a frequency degree of freedom. This is complementary to recent work that has considered
the deformation of photonic wavepackets during propagation in a background curved spacetime in the
dimensions perpendicular to that of propagation [62, 63]. We also extend the discussion to include
potential applications and outlook of the formalism.

This work is organized as follows. In Section 1, we introduce the mathematical tools necessary to
the work, where we briefly go over the relevant topics from general relativity, quantum field theory and
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quantum optics. In Section 2 we employ these tools to study the gravitational redshift of real photons
as they propagate in curved spacetime to then map the induced effect to a unitary transformation on the
photon operator. Section 3 is devoted to give an overview of the possible applications this work may have
in different fields of physics. We then put our results into perspective and give an outlook in Section 4.
Lastly, we provide concluding remarks for this work in Section 5.

1. Tools
Here we present the mathematical tools necessary to describe the setups considered in this work, and
obtain the desired results. A detailed introduction to each topic can be found in the references provided.
In this work we assume that the metric has signature (−,+,+,+), use Einstein’s summation convention,
employ natural units 𝑐 = ℏ = 𝐺N = 1 unless explicitly stated, and work in the Heisenberg picture1.

1.1. General relativity
We start by recollecting a few notions from general relativity [64, 3, 4]. Spacetime is a 3+1- dimensional
manifold  with coordinates 𝑥𝜌. Derivatives with respect to a coordinate 𝑥𝜌 are written as 𝜕𝜇 ≡ 𝜕∕𝜕𝑥𝜇
and are defined by their action on real smooth functions over the manifold.

In a curved spacetime one can introduce curves, which are smooth functions 𝛾 ∶ 𝐼 ⊂ ℝ → .
The basic structure of the manifold can be used to give coordinates 𝑥𝜇(𝜆) to the curve which are thereby
parametrized by 𝜆. A vector 𝑉 tangent to the curve 𝛾 is defined as a derivative operator 𝑉 ≡ 𝑑

𝑑𝜆
≡ 𝑑𝑥𝜇

𝑑𝜆
𝜕𝜇,

and therefore via its action on functions 𝑓 defined over the manifold. We have 𝑉 (𝑓 ) = 𝑉 𝜇𝜕𝜇𝑓 , where the
components 𝑉 𝜇 of the vector in the coordinate basis chose read 𝑉 𝜇 ∶= 𝑑𝑥𝜇∕𝑑𝜆. In general, any vector 𝑉
can be used as a basis for vectors, which might not be “aligned” along a direction 𝑥𝜇. Among all possible
choices for basis vectors, 𝑒𝜇 = 𝜕𝜇 is a particularly (often) convenient one. One-forms are introduced
as dual objects to vectors, i.e., linear maps acting on vectors, and they can be written as 𝜔 = 𝜔𝜇𝑑𝑥𝜇,
with the defining property that 𝑑𝑥𝜇(𝑒𝜈) = 𝛿𝜇𝜈 . More in general, one can have an arbitrary basis element
𝜃𝜇 for the dual space following the same argument as for the vector case. Vectors are particular cases
of tensors, which are linear maps that act on tensorial products of copies of the vector space and the
dual space. A tensor 𝑇 of rank (𝑛, 𝑚) is multilinear map (i.e., linear on all entries) defined as the map
𝑇 ∶ 𝑇 ∗

𝑝 ⊗ ... ⊗ 𝑇 ∗
𝑝 ⊗ 𝑇𝑝 ⊗ ... ⊗ 𝑇𝑝 → ℝ at each point 𝑝 in its domain, where 𝑇𝑝 is the tangent space at

point 𝑝 and 𝑇 ∗
𝑝 is the dual space to 𝑇𝑝. The tensor product is taken over 𝑛 copies of 𝑇 ∗

𝑝 and 𝑚 copies of 𝑇𝑝.
We can write that 𝑇 = 𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚𝑒𝜇1 ⊗ ... ⊗ 𝑒𝜇𝑛 ⊗𝜃𝜈1 ⊗𝜃𝜈𝑚 , where 𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚 are the components of
the tensor. We will refer to both 𝑇 and 𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚 equivalently as the tensor in the following. Note that,
strictly speaking, 𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚 are real functions over the manifold and we will rely on context for clarity.
We note here that this abuse of notation is common throughout the literature. Recall that tensorial objects
are constructed such that they remain invariant under coordinate transformations 𝑥𝜇 → 𝑥𝜇′(𝑥𝜇). In this
case we have that: vectors transform as 𝑒𝜇 → 𝑒𝜇′ =

𝜕𝑥𝜇

𝜕𝑥𝜇′
𝑒𝜇, one-forms transform as 𝜃𝜇 → 𝜃𝜇′ = 𝜕𝑥𝜇′

𝜕𝑥𝜇
𝜃𝜇,

and tensors transform as 𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚 → 𝑇 𝜇
′
1...𝜇

′
𝑛𝜈′1...𝜈

′
𝑚
= 𝜕𝑥𝜇

′
1

𝜕𝑥𝜇1
... 𝜕𝑥

𝜇′𝑛

𝜕𝑥𝜇𝑛
𝜕𝑥𝜈1

𝜕𝑥𝜈
′
1
... 𝜕𝑥

𝜈𝑛

𝜕𝑥𝜈
′
𝑛
𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚 . Finally, we

define 𝑇(𝜇𝜈) ∶=
1
2 (𝑇𝜇𝜈 + 𝑇𝜈𝜇) and 𝑇[𝜇𝜈] ∶=

1
2 (𝑇𝜇𝜈 − 𝑇𝜈𝜇). The tensor 𝑇𝜇𝜈 is symmetric if 𝑇𝜇𝜈 = 𝑇(𝜇𝜈) (or

equivalently 𝑇𝜇𝜈 = 𝑇𝜈𝜇) and it is antisymmetric if 𝑇𝜇𝜈 = 𝑇[𝜇𝜈] (or equivalently 𝑇𝜇𝜈 = −𝑇𝜈𝜇). Note that
one can always write 𝑇𝜇𝜈 = 𝑇(𝜇𝜈)+𝑇[𝜇𝜈], and this is true solely for two spacetime indices. These concepts
can be generalized to tensors of higher degree but they are unnecessary for our purposes.

The spacetime is endowed with a metric, which is a (0, 2)-type, non degenerate, symmetric tensor
𝔤 with components 𝑔𝜇𝜈(𝑥𝜌). Flat spacetime is characterized by the metric 𝜂𝜇𝜈 = diag(−1, 1, 1, 1), also
known as the Minkowski metric2. Since partial derivatives 𝜕𝜇 of tensorial components do not give rise to
the components of another tensor (e.g., 𝜕𝜇𝑉 𝜈 is not a tensor), we also introduce covariant derivatives

1 After German physicist Werner Heisenberg (5 December 1901 – 1 February 1976).
2 After German mathematician Hermann Minkowski (22 June 1864 – 12 January 1909).
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∇𝜇 in the direction 𝜇 that map tensors to other tensors. Their definition requires the Leibniz rule3
∇𝜇(𝑇 ) = ∇𝜇(𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚)𝑒𝜇1⊗...⊗𝑒𝜇𝑛⊗𝜃

𝜈1⊗𝜃𝜈𝑚+𝑇 𝜇1...𝜇𝑛𝜈1...𝜈𝑚(∇𝜇𝑒𝜇1)⊗...⊗𝑒𝜇𝑛⊗𝜃
𝜈1⊗𝜃𝜈𝑚+..., as well

as the following basic actions: ∇𝜇𝑓 ≡ 𝜕𝜇𝑓 , ∇𝜇𝑒𝜈 = Γ𝜌𝜇𝜈𝑒𝜌 and ∇𝜇𝜃𝜈 = −Γ𝜈𝜇𝜌𝜃𝜌. The quantities Γ𝜇𝜈𝜌
are not tensors and they are used to define the connection, i.e., the way vectors are parallel transported
along curves. Note that there are many ways one can choose a connection. While the Γ-symbols are
not tensors per se, the difference of two Γ-symbols is a tensor. We choose to employ the Levi-Civita
connection4 that is torsion free (Γ𝜇𝜈𝜌 = Γ𝜇𝜌𝜈) and metric compatible (i.e., ∇𝜇𝑔𝜈𝜌 = 0). This allows us to
have one set of Γ-symbols that is uniquely determined by the metric. In this case, the coefficients Γ𝜇𝜈𝜌
are called the Christoffel symbols5. We have Γ𝜇𝜈𝜌 = 1

2
𝑔𝜇𝛼

(

𝑔𝛼𝜈,𝜌 + 𝑔𝜌𝛼,𝜈 − 𝑔𝜌𝜈,𝛼
)

. Given the metric, we
can raise, lower, and contract indices in the standard way. We can classify tangent vectors 𝑉 𝜇 by using
the metric to compute their length, or norm, ||𝑉 || ∶= 𝑉𝜇𝑉 𝜇. The vector 𝑉 𝜇 is: timelike, if 𝑉 𝜇𝑉𝜇 < 0;
spacelike, if 𝑉 𝜇𝑉𝜇 > 0; null, if 𝑉 𝜇𝑉𝜇 = 0.

Geodesics are curves that satisfy ∇𝑈𝑈 = 0, where 𝑈 is the vector tangent to the curve and ∇𝑈 ∶=
𝑈𝜇∇𝜇 is the covariant derivative along the direction𝑈 . Given the spacetime of interest we can in principle
compute all of the timelike geodesics, i.e., those followed for ideal pointlike massive test particles, and
null geodesics, i.e., those followed by ideal pointlike photons. A Killing vector6 𝐾 ≡ 𝑑∕𝑑𝜉 = 𝐾𝜇𝜕𝜇
with 𝐾𝜇 ∶= 𝑑𝑥𝜇∕𝑑𝜉 is a vector that satisfies the defining constraint ∇(𝜇𝐾𝜈) = 0 and therefore enjoys
the property ∇𝐾 (𝐾𝜌𝐾𝜌) = 0. This means that its magnitude ||𝐾|| =

√

−𝐾𝜌𝐾𝜌 is constant along the
trajectory to which it is tangent.

Let us now assume that 𝑃 ∶= 𝑑∕𝑑𝜆 is the tangent vector to a (null) geodesic and 𝐾 a Killing vector
field. We therefore know that ∇𝑃𝑃 = 0 and that the Killing vector satisfies the defining equation
∇(𝜇𝐾𝜈) = 0. It is possible to use the metric compatibility ∇𝜌𝑔𝜇𝜈 = 0 to show that 𝑃 𝜇𝐾𝜇 is conserved
along the geodesic with tangent vector 𝑃 , see [3, 4]. Concretely, this can be cast as ∇𝑃 (𝑃 𝜇𝐾𝜇) = 0, which
means that the inner product 𝑃 𝜇𝐾𝜇 between the tangent vector to the geodesic and the Killing vector
remains constant. Thus, since 𝑃 𝜇𝐾𝜇 is a function, we also have that ∇𝑃 (𝑃 𝜇𝐾𝜇) = 𝑑∕𝑑𝜆(𝑃 𝜇𝐾𝜇) = 0
which means that 𝑃 𝜇𝐾𝜇|𝜆i

= 𝑃 𝜇𝐾𝜇|𝜆 at any latter hypersurface Σ labelled by 𝜆 and perpendicular to the
Killing vector 𝑃 . Notice that such foliation might not (and, in general, will not) exist across all spacetime.

1.2. Quantum field theory in curved spacetime
Photons are excitations of the electromagnetic field. Therefore, the natural choice of the theory to use
would be (free) quantum electrodynamics in curved spacetime [65, 66, 67]. This, however, would also
be an overcomplication largely unnecessary for the purposes of our work. In fact, at this stage we are not
interested in obtaining the quantitatively correct magnitude of a particular effect to be compared with the
result of an experiment but we are interested instead in proving that certain transformations are expected
to occur in the first place. Therefore, it shall be implicitly assumed that future work must be dedicated
to bringing the mathematical predictions provided here to a level where a concrete experiment can be
proposed. A detailed introduction to quantum field theory in curved spacetime can be found in any of the
dedicated monographs and it is left to the interested reader [65, 66].

For the purposes of our work, and without loss of generality, we model photons as the excitations of a
massless scalar quantum field 𝜙̂(𝑥𝜇) propagating on classical (curved) 3+1 background with coordinates
𝑥𝜇 and metric 𝑔𝜇𝜈 . Such field can be employed to model one polarization of the electromagnetic field in
the regimes considered here [67]. The classical field 𝜙(𝑥𝜇) will satisfy the Klein-Gordon equation7

(

(√

−𝑔
)−1

𝜕𝜇
(

𝑔𝜇𝜈
√

−𝑔 𝜕𝜈
)

)

𝜙(𝑥𝜇) = 0, (1)

3 After German polymath Gottfried Wilhelm von Leibniz (1 July 1646 – 14 November 1716).
4 After Italian mathematician Tullio Levi-Civita (29 March 1873 – 29 December 1941).
5 After German mathematician and physicist Elwin Bruno Christoffel (10 November 1829 – 15 March 1900).
6 After German mathematician Wilhelm Karl Joseph Killing (10 May 1847 – 11 February 1923).
7 After Swedish physicist Oskar Benjamin Klein (15 September 1894 – 5 February 1977) and German physicist Walter Gordon
(13 August 1893 – 24 December 1939).
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which can also be written conveniently as □𝜙(𝑥𝜇) = 0 where □ ∶= (
√

−𝑔)−1𝜕𝜇
(

𝑔𝜇𝜈
√

−𝑔𝜕𝜈
)

. Here 𝑔 is
the determinant of the metric.

Finding solutions to Equation (1) is very difficult since, in a general spacetime, there is no preferred
notion of time [64, 65]. When a notion of time exists, for example the spacetime has a global timelike
Killing vector field 𝐾 ≡ 𝑑∕𝑑𝜉, it is possible to meaningfully foliate the spacetime in spacelike
hypersurfaces orthogonal to 𝐾 and separate variables for the energy part and solve the Klein-Gordon
equation. Upon quantization one finally obtains

𝜙̂(𝑥𝜇) = ∫ 𝑑3𝑘
[

𝜙𝒌(𝑥𝜇) 𝑎̂𝒌 + 𝜙∗
𝒌(𝑥

𝜇) 𝑎̂†𝒌
]

, (2)

where the mode solutions 𝜙𝒌(𝑥𝜇) are labelled by the quantum numbers 𝒌, satisfy □𝜙𝒌(𝑥𝜇) = 0 and
are normalized by (𝜙𝒌, 𝜙𝒌′) = 𝛿3(𝒌 − 𝒌′) given the appropriate inner product (⋅, ⋅). The annihilation and
creation operators 𝑎̂𝒌, 𝑎̂

†
𝒌 satisfy the canonical commutation relations [𝑎̂𝒌, 𝑎̂

†
𝒌′
] = 𝛿3(𝒌−𝒌′), while all other

commutators vanish. Note that, in the most general cases, some quantum numbers might be continuous
and others discrete. For example, in flat spacetimes we expect to have 𝒌 ≡ (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ∈ ℝ3. In any
case, we consider spacetimes with no compactified dimensions, and therefore we expect all quantum
numbers to be a continuous variables. This also implies that the commutation relations will have Dirac
deltas and no Kronecker deltas8. We do not attempt to be extremely formal in this regard and we leave
it to specific cases to study cases where some dimensions are compact. The mode solutions also satisfy
𝑖 𝜕𝜉𝜙𝒌(𝑥𝜇) = 𝜔𝒌 𝜙𝒌(𝑥𝜇), where 𝐾 = 𝑑∕𝑑𝜉 is a timelike (Killing) vector, which guarantees a consistent
notion of particle in time. The frequency 𝜔𝒌 is a function of 𝒌 that can be obtained by separation of
variables in (1). For example, in flat spacetime one has 𝜔𝒌 = |𝒌|.

If the notion of time is not easily obtainable, in the sense that there is no preferred timelike Killing
vector to choose, one can still try to look for consistent ways to propagate solutions from one foliation of
the spacetime to the next, but this becomes extremely difficult from an algebraic perspective. Some work
in this direction has been performed with a reasonable degree of success [68, 69].

The annihilation operators 𝑎̂𝒌 define the vacuum state |0⟩ of the theory through 𝑎̂𝒌|0⟩ = 0 for all 𝒌.
The one-particle state with sharp momentum 𝒌 is the defined by |1𝒌⟩ ∶= 𝑎̂†𝒌|0⟩, and the sharp momentum
many-particle state is immediately obtained through standard procedure. It is important to recall that the
states |1𝒌⟩ are not properly normalized, in the sense that ⟨1𝒌|1𝒌′⟩ = 𝛿3(𝒌 − 𝒌′). This can be seen as the
consequence of the fact that the particle has nonzero physical support over all of spacetime, and that there
is no natural localization due to Lorentz invariance9. Such particles, while naturally arising from the
theory and therefore useful for immediate understanding of certain important features of particle physics,
are not a good model of realistic particles. We will deal with constructing more realistic particles below.

1.3. Modelling realistic photons
A physical (realistic) photon is characterized by a finite spatial extension and frequency bandwidth instead
of an (infinitely) sharp momentum [58, 59]. Photons with only one frequency do not exist, and what is
usually meant by this characterization is that the frequency distribution of the photon is sharply peaked
around the red or blue wavelengths. In fact, one can argue from first principles that a photon with an
infinitely sharp momentum must be spread across the whole of spacetime. In a realistic scenario, instead,
we consider a 3+1-dimensional spacetime within which we expect to find a localized photon propagating
in a given direction [70, 71]. Such photon will be characterized by a spatial extension along the direction
of propagation as well as an extension in the directions perpendicular to it. We will refer to such photon
in the following as a realistic photon with the understanding that polarization is omitted without loss of
generality and that it can be readily included when necessary by considering spin-1 fields.
8 After German mathematician Leopold Kronecker (7 December 1823 – 29 December 1891).
9 After Dutch physicist Hendrik Antoon Lorentz (18 July 1853 – 4 February 1928).
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Given the mode functions 𝜙𝒌(𝑥𝜇) we introduce the bandwidth function 𝐹𝒌0(𝒌) which is peaked around
𝒌0 and has a certain (three dimensional) width. Such function is used to construct the “bandwidth” of the
photon in momentum space. Note that we can generalize the bandwidth functions to those with multiple
peaks. There is no a priori way to determine a specific form for the bandwidth function, nor are we
aware of fundamental principles that can inform us on a specific choice. Photons can be engineered in
the laboratory to have different bandwidth profiles [72, 73, 74], which seems to suggest that a theory that
predicts a preferred such function should not be expected.

We can construct a “shape profile” 𝐹 s
𝒌0
(𝑥𝜇) as

𝐹 s
𝒌0
(𝑥𝜇) ∶= ∫ 𝑑3𝑘𝐹𝒌0(𝒌)𝜙𝒌(𝑥𝜇), (3)

and it is immediate to check that it satisfies the Klein-Gordon equation □𝐹 s
𝒌0
(𝑥𝜇) = 0. We can also say

that 𝐹 s
𝒌0
(𝑥𝜇) is nothing more than a different mode function that can be used as a particular element of

a basis for the field expansion (2). An example of a new mode function would be a particular Unruh
mode10 [75, 76]. Note that, since the bandwidth function 𝐹𝒌0(𝒌) has an extension in three momentum
dimensions, we also expect the shape function 𝐹 s

𝒌0
(𝑥𝜇) to have extension in three dimensions.

We now move to the construction of a realistic photon operator, that is, one that satisfies the usual
canonical commutation relations. We define the annihilation operator 𝐴̂𝒌0(𝑥

𝜌) through the expression

𝐴̂𝒌0(𝑥
𝜇) ∶= ∫ 𝑑3𝑘𝐹𝒌0(𝒌)𝜙𝒌(𝑥𝜇) 𝑎̂𝒌, (4)

and constrain it to a hypersurface Σ by setting 𝐴̂𝒌0(𝑥
𝜇)|Σ, which is taken to signify that𝜙𝒌(𝑥𝜇) is evaluated

at Σ. We sometimes just write 𝐴̂𝒌0 in place of 𝐴̂𝒌0(𝑥
𝜇)|Σ. It is immediate to verify that [𝐴̂𝒌0 , 𝐴̂

†
𝒌0
] = 1 if

and only if ∫ 𝑑3𝑘|𝐹𝒌0,𝑥|Σ(𝒌)|
2 = 1, where we have introduced the function 𝐹𝒌0,𝑥|Σ(𝒌) ∶= 𝐹𝒌0(𝒌)𝜙𝒌(𝑥𝜇)|Σ

for convenience of presentation. This condition guarantees that there must be peaks because such function
is an element of 2 and therefore vanishes at infinity (there are directions that are not compact and thus
of infinite support). We will assume normalization of these functions from now on.

Let us introduce the inner product ⟨𝐹 ,𝐺⟩ ∶= ∫ 𝑑3𝑘𝐹 ∗(𝒌)𝐺(𝒌) between functions 𝐹 (𝒌) and 𝐺(𝒌).
We can therefore write that ⟨𝐹𝒌0,𝑥|Σ , 𝐹𝒌0,𝑥|Σ⟩ = 1 as our given normalization condition. Furthermore,
we note that the Hilbert space11  of the (scalar) photon is infinite dimensional and therefore we need
to introduce the set of functions 𝐹𝜆,𝑥|Σ(𝒌) determined by a set of parameters 𝜆 such that, together with
𝐹𝒌0,𝑥|Σ(𝒌), they form an orthonormal basis. In practice this means that ⟨𝐹𝒌0,𝑥|Σ , 𝐹𝜆,𝑥|Σ⟩ = 0 for all 𝜆,
while ⟨𝐹𝜆,𝑥|Σ , 𝐹𝜆′,𝑥|Σ⟩ = 𝛿(𝜆− 𝜆′). The delta here is a function of the variables 𝜆 that label the new basis.
Field operators associated with the modes 𝐹𝜆,𝑥|Σ(𝒌) can then be defined as 𝐴̂𝜆 ∶= ∫ 𝑑3𝑘𝐹𝜆,𝑥|Σ(𝒌) 𝑎̂𝜔 and
therefore [𝐴̂𝒌0 , 𝐴̂

†
𝜆] = 0 while [𝐴̂†

𝜆, 𝐴̂
†
𝜆′
] = 𝛿(𝜆−𝜆′). The explicit construction of the basis {𝐹𝜆} might be

very difficult, if not impossible, to obtain in practice. In general, however, the expression of each element
basis will not be needed.

1.4. Gravitational redshift
Gravitational redshift is one of the key predictions of general relativity [64]. It has been unequivocally
confirmed experimentally [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], and it is also accounted for in existing
technology such as the global positioning system (GPS) [77]. Regardless of these experimental successes,
as well as its theoretical standing, it is fair to say that to date this effect lacks a conclusive explanation
10 After Canadian physicist William George Unruh.
11 After German mathematician David Hilbert (23 January 1862 – 14 February 1943).
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[30, 78]. It remains unclear if it is a fundamental effect witnessed by the photons due to their propagation
in curved spacetime, or a consequence of the effects of such curvature on local emitting and measuring
devices. If one assumes the second point of view, then the gravitational redshift is not viewed as a “change
in frequency of the photon”, but rather as a mismatch in the frequencies of the constituents forming, for
example, the detecting devices of the sender and receiver respectively.

Box 1: Static observers in Schwarzschild spacetime

As an example we consider the case of Schwarzschild spacetime12 that can be used to model the metric
outside a spherical nonrotating object of mass 𝑀 , see [3, 4]. Schwarzschild spacetime is spherically
symmetric with coordinates 𝑥𝜇 ≡ (𝑡, 𝑟, 𝜃, 𝜑), is static, and is given the line element

𝑑𝑠2 = −𝑓 (𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑓 (𝑟)
+ 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜑2.

Here 𝑓 (𝑟) ∶= 1 − 𝑟S∕𝑟 and 𝑟S ∶= (2𝐺N𝑀)∕𝑐2 is the Schwarzschild radius of the massive object. For
reference, the Earth has a Schwarzschild radius of approximatively 𝑟S ≈ 9 mm. The spacetime is endowed
with the timelike Killing vector 𝐾 ≡ 𝜕𝑡 = (1, 0, 0, 0), where the norm squared ||𝐾||

2 ∶= 𝐾𝜇𝐾𝜇 = −𝑓 (𝑟)
is negative, as required for timelike vectors, as long as we remain outside the event horizon located at 𝑟S.
We consider two observers Alice and Bob who are located at constant radii 𝑟A and 𝑟B (i.e., 𝜃 and 𝜙 are
constant) and have four-velocities 𝑈A ≡ 1∕

√

𝑓 (𝑟A)(1, 0, 0, 0) and 𝑈B ≡ 1∕
√

𝑓 (𝑟B)(1, 0, 0, 0) respectively.
A photon propagating from Alice to Bob has four momentum 𝑃 𝜇 = (𝑓−1(𝑟),−1, 0, 0), which is null. We
can therefore compute the gravitational redshift (6) witnessed when they exchange photons. We find

𝜒2 =
𝜔B
𝜔A

=

√

𝑓 (𝑟A)
√

𝑓 (𝑟B)
,

which is the well known formula from the literature. Notice that Alice and Bob are not following geodesics
since they do not have angular momentum and therefore need to use a propulsion mechanism to remain at
a constant distance from the planet. In fact, we can compute the proper acceleration 𝐴 ∶= ∇𝑈𝑈 , which is
zero if and only if the observer follows a geodesic. In our case, it turns out that the only nonzero component
is 𝐴1 ≡ 𝐴𝑟 = 1∕2𝜕𝑟𝑔00 obtained by noting that 𝐴𝑟 = (𝑈0)2Γ𝑟00. We have 𝐴𝑟 = 𝑟S∕(2𝑟2) = 𝐺N𝑀∕𝑟2,
where the radius 𝑟 is evaluated at the location of Alice or Bob. This is precisely the acceleration necessary
to maintain the observer fixed at location 𝑟 as predicted by Newtonian mechanics.

12 After German physicist Karl Schwarzschild (9 October 1873 – 11 May 1916).

Here we take the approach that a frequency is what a (localized) observer measures with his (local)
clock [79, 37]. With this in mind, we consider two (ideal and pointlike) observers Alice and Bob that move
along paths in curved spacetime with tangent four-vectors𝑈A and𝑈B respectively. Alice measures proper
time 𝜏A and frequency 𝜔A locally using her clock, while Bob measures proper time 𝜏B and frequency 𝜔B
locally using his clock. Alice generates a pulse of light at a location 𝑥A along her path, and this pulse
travels through spacetime to be received by Bob at location 𝑥B along his. The generic expression for the
redshift [3], denoted by 𝑧, is therefore given by

(1 + 𝑧) ≡ 𝜒2 ∶=
𝜔B
𝜔A

=
(𝑃𝜇 𝑈

𝜇
B )|𝑥B

(𝑃𝜇 𝑈
𝜇
A)|𝑥A

. (5)

In this work we also use the nonnegative parameter 𝜒 for consistency with recent literature [58, 59].
Gravitational redshift is a particular instance of change of frequency as measured by an emitter and

an observer. The existence of purely gravitational redshift, and its dependence on the parameters of
the system, depends on the scenario adopted and dominates when considering observers that are static
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with respect to each other. In general, the expression (5) contains a kinematic contribution that we can
associate to the Doppler shift13, which occurs as a consequence of relative motion of observers, as well as a
purely gravitational contribution. The situation becomes even worse in the case of dynamical spacetimes,
since it can occur that the emitter and observer are located in regions of spacetime endowed with a
(asymptotic) timelike Killing vector but in between the spacetime is dynamic. In this case we expect
that, when considering quantum mechanical effects during the propagation of the photon, there might be
additional particle creation phenomena occurring [65, 66]. An example would be particle creation due to
an expanding universe. In this case, the universe is flat in the asymptotic past and future but expands at a
certain rate in between. Particles are created as a result from the quantum vacuum, and signals sent from
a past observer are distorted in a complicated way from the perspective of a future one [80, 81].

Box 2: Observers following different geodesics in Schwarzschild spacetime

As a second example we consider again the case of Schwarzschild spacetime. The spacetime is endowed
with a spacelike rotational Killing vector𝑅 ∶= 𝜕𝜑 = (0, 0, 0, 1). We can use𝑅 together with𝐾 to construct
the new Killing vectors 𝐽± = 𝐾 ± Ω𝑅, where Ω > 0 is an angular constant that we fix below. Assuming
we lie on the equatorial 𝜃 = 𝜋∕2 plane we have ||𝐽 ||2 = −(𝑓 (𝑟) − Ω2𝑟2). We can construct the timelike
vectors 𝑉± = 1∕

√

𝑓 (𝑟) − Ω2𝑟2(𝐾 ± Ω𝑅) that are normalizied by 𝑉±𝜇𝑉
𝜇
± = −1. If we require that 𝑉 𝜇

± are
also geodesics followed by Bob, then they satisfy ∇𝑉±𝑉

𝜇
± = 0, which implies that Bob’s proper acceleration

𝐴± ∶= ∇𝑉±𝑉± also vanishes. This in turn implies that 0 = Γ𝜇00(𝑉 0
± )

2 + Γ𝜇33(𝑉 3
± )

2 + 2Γ𝜇03𝑉 0
±𝑉

3
± . Using

the explicit expressions for these coefficients and the components of 𝑉± we find that the geodesic equation
implies Ω =

√

𝐺N𝑀∕𝑟3, i.e., exactly the angular parameter that is found in Newtonian gravity for a stable
circular orbit. We therefore have 𝑉± = 1∕

√

1 − 3𝐺N𝑀∕𝑟
(

1, 0, 0,±
√

𝐺N𝑀∕𝑟3
)

. The two solutions can
be interpreted as Bob moving in orbit clockwise or counterclockwise.
Alice, who is located at a constant point in space, has four momentum 𝑈𝜇 = 1∕

√

𝑓 (𝑟)(1, 0, 0, 0). We can
therefore compute the gravitational redshift (5) witnessed when Alice and Bob exchange photons. We find,

𝜒2 =
𝜔B
𝜔A

=

√

1 − 2𝐺N𝑀∕𝑟A
√

1 − 3𝐺N𝑀∕𝑟B
,

which coincides as expected with the solution found in the literature.

Le us now assume that there is a timelike Killing vector𝐾 in some region of spacetime. We can impose
to the two observers to follow two paths whose tangent vectors 𝑈𝜇 are aligned to the same Killing vector
field [3, 4]. The idea is that observers following such paths are static with respect to each other. In this
case, we would have 𝑈𝜇 = 𝐾𝜇∕(

√

−𝐾𝜌𝐾𝜌), since we must have 𝑈𝜇𝑈𝜇 = −1 for the trajectory of a
physical observer. This in turn implies that

𝜒2 =

√

−𝐾𝜌𝐾𝜌|𝑥A
√

−𝐾𝜌𝐾𝜌|𝑥B

(𝑃𝜇 𝐾
𝜇
B)|𝑥B

(𝑃𝜇 𝐾
𝜇
A)|𝑥A

=

√

−𝐾𝜌𝐾𝜌|𝑥A
√

−𝐾𝜌𝐾𝜌|𝑥B

(6)

since 𝑃 𝜇𝐾𝜇 is conserved along the null geodesic followed by the photon [3, 4].
An observer following the path with tangent vector 𝑈 witnesses the passage of proper time 𝜏 as

measured by his local clock. This means that we have 𝑈𝜇 = 𝑑𝑥𝜇∕𝑑𝜏 and 𝐾𝜇 = (𝑑𝑥𝜇∕𝑑𝜉), and the
proper time 𝜏 is related to the parameter 𝜉 by the relation 𝑑𝜏 = ||𝐾||𝑑𝜉.

Notice that if the Killing vector 𝐾 is also tangent to a geodesic it must satisfy ∇𝐾𝐾 = 0, and it is
immediate to see that ∇𝑃 (𝐾𝜇𝐾𝜇) = −2𝑃𝜎∇𝐾𝐾𝜎 = 0, which means that the magnitude ||𝐾||

2 = −𝐾𝜇𝐾𝜇
of the Killing vector𝐾 is preserved along the null geodesic followed by the pulse of light. It would follow
13 After Austrian mathematician and physicist Christian Andreas Doppler (29 November 1803 – 17 March 1853).
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that (1 + 𝑧) = 𝜒2 = 1 which would imply that there would be no gravitational redshift. This is to be
expected since there can be no redshift between two observers following the same geodesic, which is an
equivalent statement to saying that there is no Doppler effect between two inertial observers following
the same inertial trajectory. An example of this scenario would be two observers free falling straight
towards the Earth along the same radial direction. The situation would change if Alice and Bob were to
follow different geodesics. An example of this second scenario would be an observer free falling straight
towards the Earth, with the other one orbiting around the planet. Even two observers free falling towards
the Earth along different directions would witness a Doppler effect due to relative motion. The second to
last example is explained in detail in Box 2.

1.5. Quantum optics
Electrodynamics in flat or curved spacetime can be fully described using quantum field theory [67].
The theory requires the four-vector potential 𝐴𝜇 that is used to define the Faraday tensor14 𝐹𝜇𝜈 ∶=
∇𝜇𝐴𝜈 − ∇𝜈𝐴𝜇 obeying Maxwell’s equations15

{

∇𝜇𝐹 𝜇𝜈 = 𝐽 𝜈
∇[𝜌𝐹𝜇𝜈] = 0

in tensor form, where 𝐽𝜇 is the four-current. Note that in flat spacetime one has the identification
𝐴𝜇 ≡ (𝜑,𝑨) and 𝐽𝜇 ≡ (𝜌, 𝒋) in terms of charge density 𝜌, electric current 𝒋, scalar potential 𝜙 and
vector potential 𝑨. This absolute distinction becomes meaningless in (strongly) curved spacetime.

Solving Maxwell’s equations can require significant effort especially when sources are present (i.e.,
when 𝐽𝜇 ≠ 0). Furthermore, when spacetime is curved the complexity increases dramatically, leaving
little hope for analytical solutions. In flat spacetime when no charges are present one can derive the
field equations □𝐴𝜇 = 0 for the four-potential and a gauge must be chosen in order to obtain concrete
solutions. Since the field equations are linear, one expects to obtain the full field expression as a linear
superposition of plane waves solutions similar to the expression (2) presented above for the scalar field.
Choosing the Coulomb gauge16 ∇𝑗𝐴𝑗 = 0, it is easy to show that the 𝐴0 component is not dynamical
and the remaining three degrees of freedom 𝐴𝑘 are the ones that will be present in the kinematics. The
difference with the scalar field case will be that additional degrees of freedom are present, such as the spin
𝑠 = ±1. Therefore, the mode structure must be upgraded from the functions exp[𝑖𝑘𝜇𝑥𝜇] to the quantities
exp[𝑖𝑘𝜇𝑥𝜇]𝜀𝜎(𝒌), where 𝜀𝜎(𝒌) are three-dimensional vectors [67]. One then obtains

𝑨(𝑥𝜇) =
∑

𝜎 ∫ 𝑑3𝑘
[

𝜀𝜎(𝒌)𝑒𝑖𝑘𝜇𝑥
𝜇
𝑎̂𝜎,𝒌 + 𝜀∗𝜎(𝒌)𝑒

−𝑖𝑘𝜇𝑥𝜇 𝑎̂†𝜎,𝒌
]

. (7)

Note that there are only two independent polarization degrees of freedom in this expression, since the
Coulomb gauge implies the constraint 𝒌 ⋅ 𝜀𝜎(𝒌) = 0 and we have [𝑎̂𝜎,𝒌, 𝑎̂

†
𝜎′,𝒌′

] = 𝛿𝜎,𝜎′𝛿3(𝒌− 𝒌′) while all
other commutators vanish.

Solving Maxwell’s equations inside a medium, or in curved spacetime, does not lead to a simple
expression as the one in (7). For example, when a laser propagates through a crystal it would be an
extremely taxing task to model accurately the interaction of the atoms and free charged particles with the
field itself. Instead, if it is possible to reduce the whole process by showing that there are effectively few
degrees of freedom that are interacting, this can lead to a great deal of formal simplification and greater
experimental control over the system.

Quantum optics is the field of physics that has been developed to simplify the complexity of quantum
electrodynamics when a coherent source of light is considered (i.e., a laser) [61]. In this case, interaction
14 After English scientist Michael Farady (22 September 1791 – 25 August 1867).
15 After Scottish scientist James Clerk Maxwell (13 June 1831 – 5 November 1879).
16 After French engineer and physicist Charles-Augustin de Coulomb (14 June 1736 – 23 August 1806).
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with cavities or atoms leads to the situation where few field modes to play a significant role while all others
can be effectively ignored [61]. This approach leads to a simplified, elegant yet powerful formalism that
allows to model the physics that are studied in everyday modern quantum optics laboratories employing
a few degrees of freedom only. The idea is that a finite collection of second-quantized field operators 𝑎̂𝑛
satisfying the canonical commutation relations [𝑎̂𝑛, 𝑎̂†𝑚] = 𝛿𝑛𝑚 will be involved in the definition of the
quantum states of the system, and will be used to define the Hamiltonian that governs its dynamics.

These operators are used to define the vacuum state 𝑎̂𝑛|0⟩ = 0 for all 𝑛, and normalized Fock states17

are defined by the standard second-quantized expression |𝑛1𝑛2...⟩ ∶=
∏

𝑘(𝑎̂
†
𝑘)
𝑛𝑘∕

√

𝑛𝑘!|0⟩. Examples
of the power of this approach are the ability to account for effects such as parametric down-conversion
[82, 83] and the Hong-Ou-Mandel18 effect [84, 85]. Among all possible quantum states that can be
realized in the laboratory, the ones that are most commonly considered in this field are listed in Box 3.

Box 3: List of prominent quantum optical states

In the table below we list some of the most prominent states used in quantum optics. Note that these states
can be slightly generalized by adding relative phases in the appropriate place. We choose to set them to
zero for simplicity of presentation. To give a perspective on the meaning of the parameters we can compute
the average number ⟨𝑁⟩ ∶= Tr(𝜌̂𝑁̂) of particles in each state as a benchmark, where 𝑁̂ ∶=

∑

𝑘 𝑎̂
†
𝑘𝑎̂𝑘 is

the particle number operator, 𝑘 = 1, ..., 𝑁 , and 𝑁 is the number of modes. We have: ⟨𝑁⟩ = |𝛼|2 for
the coherent state, ⟨𝑁⟩ = (𝑒(ℏ𝜔)∕(𝑘B𝑇 ) − 1)−1 for the thermal state, ⟨𝑁⟩ = 2 sinh2 𝑠 for the single-mode
squeezed state, ⟨𝑁⟩ = 2 sinh2 𝑟 for the two-mode squeezed state, ⟨𝑁⟩ = 𝑁 for the N00N state.

List of prominent quantum optical states
State Name Type State operator Operator Fock-state representation
Coherent state Pure |𝛼⟩ = 𝑈̂ (𝛼)|0⟩ 𝑈̂ (𝛼) = 𝑒𝛼𝑎̂†−𝛼∗𝑎̂ |𝛼⟩ = 𝑒−|𝛼|2∕2

∑

𝑛
(𝑎̂†)𝑛
√

𝑛!
|0⟩

Thermal state Mixed 𝜌̂𝑇 𝜌̂𝑇 =
(

1−𝑒
− ℏ𝜔
𝑘B𝑇

)
∑

𝑛 𝑒
− 𝑛ℏ𝜔
𝑘B𝑇

|𝑛⟩⟨𝑛|

Squeezed state:
single mode

Pure |𝑠⟩ ∶= 𝑈̂ (𝑠)|0⟩ 𝑈̂ (𝑠) = 𝑒𝑠(𝑎̂†2−𝑎̂2) |𝑠⟩ =
∑

𝑛

√

(2𝑛)!
2𝑛𝑛!

tanh𝑛(2𝑠)
√

cosh(2𝑠)
|2𝑛⟩

Squeezed state:
two modes

Pure |𝑟⟩ ∶= 𝑈̂ (𝑟)|0⟩ 𝑈̂ (𝑠) = 𝑒𝑟(𝑎̂†𝑏̂†−𝑎̂𝑏̂) |𝑠⟩ =
∑

𝑛
tanh𝑛 𝑟
cosh 𝑟 |𝑛, 𝑛⟩

N00N state Pure |𝜓𝑁00𝑁⟩ |𝜓𝑁00𝑁⟩ = 1
√

2
[|𝑁0⟩ + |0𝑁⟩]

Interestingly, we note that the vacuum state |0⟩ is the only pure thermal state.

Although quantum optics provides the tools to study the physics that occur in a laboratory where field
modes are manipulated through linear optical gates and ultimately interact with single atoms, clouds of
atoms [86, 87] or crystals [88, 89], in the past years it has become evident that its principles, language
and techniques can be used to describe a myriad of phenomena seemingly pertaining to completely
disconnected fields. For example, quantum squeezed states naturally arise in the Unruh effect [75] and
Hawking effect19 [90, 91], in particle creation phenomena due to an expanding universe [92], as well as
particle creation due to moving boundary conditions [93, 94, 95]. In this sense, quantum optics can also
be viewed as a set of tools and concepts that can be applied to better understand, characterize and extract
information from many physical systems regardless of their concrete incarnation.
17 After Soviet physicist Vladimir Aleksandrovich Fock (22 December 1898 – 27 December 1974).
18 After Korean physicist Chung Ki Hong, Chinese-American physicist Zhe-Yu Jeff Ou, and American physicist Leonard Mandel
(9 May 1927 – 9 February 2001).
19 After English physicist Stephen William Hawking (8 January 1942 – 14 March 2018).
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1.6. Linear dynamics
Among all possible dynamics allowed in Nature, we can restrict ourselves to the regime of linear
dynamics. By linear in this context we mean the fact that the Hamiltonian is quadratic in the annihilation
and creation operators (or, equivalently, the quadrature operators [61]). This is not related to the
fundamental linearity of quantum mechanics. Linear dynamics are paramount in quantum optical
laboratories. We tackle linear dynamics using the symplectic formalism to map unitary operators to (low-
dimensional) matrices. An extensive review can be found in the literature [96].

We consider a system of 𝑁 bosonic (quantum harmonic oscillators) modes with annihilation and
creation operators 𝑎̂𝑛, 𝑎̂†𝑛 that satisfy the canonical commutation relations [𝑎̂𝑛, 𝑎̂𝑚] = 𝛿𝑛𝑚, while
all others vanish. It is convenient to collect all of the operators in the operator vector 𝕏̂ ∶=
(𝑎̂1, 𝑎̂2, ..., 𝑎̂𝑁 , 𝑎̂

†
1, 𝑎̂

†
2, ..., 𝑎̂

†
𝑁 )

Tp, where Tp stands for transpose. The canonical commutation relations can
be recast as [𝑋̂𝑛, 𝑋̂†

𝑚] = 𝑖Ω𝑛𝑚, where the matrix 𝛀 ∶= diag(−𝑖, ... − 𝑖, 𝑖, ..., 𝑖) is called the symplectic
form and 𝑋̂𝑛 is the 𝑛-th element of the vector 𝕏̂. Any linear unitary evolution 𝑈̂ (𝑡) of our system can be
represented by a 2𝑁 × 2𝑁 symplectic matrix 𝑺(𝑡) through the fundamental equation

𝕏̂(𝑡) = 𝑈̂ (𝑡)† 𝕏̂(0) 𝑈̂ (𝑡) = 𝑺(𝑡) 𝕏̂(0). (8)

The defining property of a symplectic matrix 𝑺 is that it satisfies 𝑺 𝛀𝑺† = 𝑺†𝛀𝑺 = 𝛀.
Any quadratic Hamiltonian 𝐻̂ can be put in a matrix form 𝑯 via the relation 𝐻̂ = (ℏ∕2)𝕏̂†𝑯 𝕏̂.

Given the choice of ordering of the operators in the vector 𝕏̂, the matrices 𝑺 and 𝑯 have the expression

𝑯 =
(

𝑼 𝑽
𝑽 ∗ 𝑼 ∗

)

, 𝑺 =
(

𝜶 𝜷
𝜷∗ 𝜶∗

)

, (9)

where 𝑼 and 𝑽 satisfy 𝑼 = 𝑼 † and 𝑽 = 𝑽 𝑇 . Notice that the defining property of the symplectic matrix
𝑺 is equivalent to the well-known Bogoliubov identities20,which in matrix form read 𝜶 𝜶†−𝜷 𝜷† = 1 and
𝜶 𝜷Tp − 𝜷 𝜶Tp = 0. Thus Bogoliubov transformations are symplectic transformations (and viceversa).

We conclude that the action (8) of the time evolution operator 𝑈̂ (𝑡) on the (vector of) creation and
annihilation operators implies that it has the symplectic representation

𝑺(𝑡) =
←

 exp
[

𝛀 ∫

𝑡

0
𝑑𝑡′𝑯(𝑡′)

]

. (10)

The symbol
←

 stands for the time-ordering operator.
In the context of interest to this work, one applies the main techniques to Gaussian states of light

that will allow for analytical results. The ambition is to characterize the effects and understand the
physical principles that lie below them rather than to provide a complete concrete description of a realistic
implementation.

1.7. Covariance Matrix Formalism
Among all possible states in the Hilbert space, we can choose to restrict ourselves to the class of Gaussian
states21. Gaussian states are those quantum states with a Gaussian Wigner function22. These states are
prominent across many areas of physics [96], and quantum optics in particular. When considered in
conjunction with linear dynamics, they allow for a full description and characterisation of the whole
physical system using the covariance matrix formalism [95, 97, 98]. Note that, while the analytical
solution obtained for linear dynamics can be obtained independently of the initial state, the covariance
20 After Soviet mathematician and physicist Nikolay Nikolayevich Bogoliubov (21 August 1909 – 13 February 1992).
21 After German mathematician Johann Carl Friedrich Gauss (30 April 1777 – 23 February 1855).
22 After Hungarian physicist Eugene Paul Wigner (17 November 1902 – 1 January 1995).
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matrix formalism can be employed only when considering Gaussian states. A full introduction to this
topic is left to the literature [96].

Any Gaussian state 𝜌̂G of𝑁 bosonic modes fully characterised by the 2𝑁-dimensional vector 𝑑 of first
moments and the 2𝑁×2𝑁 covariance matrix of second moments 𝝈 defined by the elements 𝑑𝑛 ∶= ⟨𝑋̂𝑛⟩𝜌̂G

and 𝜎𝑛𝑚 ∶= ⟨𝑋̂𝑛𝑋̂†
𝑚+𝑋̂

†
𝑚𝑋̂𝑛⟩𝜌̂G

−2 ⟨𝑋̂𝑛⟩𝜌̂G
⟨𝑋̂†

𝑚⟩𝜌̂G
. Here, ⟨𝐴̂⟩𝜌̂G

∶= Tr(𝐴̂𝜌̂G) is the average of the operator
𝐴̂ with respect to the state 𝜌̂G.

Given the above, we see that the von Neumann equation23 𝜌̂G(𝑡) = 𝑈̂ (𝑡) 𝜌̂G(0) 𝑈̂ †(𝑡) takes the form

𝝈(𝑡) = 𝑺(𝑡)𝝈(0)𝑺†(𝑡) and 𝑑(𝑡) = 𝑺 𝑑(0).

Williamson’s theorem24 guarantees that any 2𝑁 × 2𝑁 matrix, such as the covariance matrix 𝝈, can be
put in diagonal form as 𝝈 = 𝒔 𝝂⊕ 𝒔† by an appropriate symplectic matrix 𝒔, see [99]. The diagonal
matrix 𝝂⊕ is called the Williamson form of the covariance matrix 𝝈 and has the expression 𝝂⊕ =
diag(𝜈1, ..., 𝜈𝑁 , 𝜈1, ..., 𝜈𝑁 ), where 𝜈𝑛 ≥ 1 are called the symplectic eigenvalues of 𝝈 and are found as the
absolute value of the spectrum of 𝑖𝛀𝝈. The general expression for such eigenvalues is 𝜈𝑛 = coth

( ℏ𝜔𝑛
2 𝑘B 𝑇𝑛

)

,
where 𝑇𝑛 is a local temperature of each subsystem. This is equivalent to the statement that Gaussian
states are locally (i.e., in terms of single subsystems) equivalent to thermal states (i.e., up to local unitary
transformations). Clearly, when 𝑇𝑛 = 0 for all 𝑛 one has 𝝂⊕ ≡ 1, i.e., the state is pure. Finally, we
note that in this formalism tracing over a subsystem is performed by deleting the corresponding rows and
columns in the covariance matrix.

Box 4: Examples of Gaussian states in the covariance matrix formalism

In this formalism, we can conveniently write unitary operators induced by quadratic Hamiltonians in matrix
form. For example, we can consider a single-mode squeezing operation 𝑈̂SMS(𝑠) = exp[𝑠((𝑎̂†)2−𝑎̂2)], which
is represented by the 2 × 2 matrix 𝑺SMS(𝑠) of the form

𝑺SMS(𝑠) =
(

cosh 𝑠 sinh 𝑠
sinh 𝑠 cosh 𝑠

)

,

where 𝑠 is the squeezing parameter. We can also look at two-mode operations such as beam-splitting
𝑈̂BS(𝜃) = exp[𝜃(𝑎̂†𝑏̂ − 𝑎̂𝑏̂†)] and two-mode squeezing 𝑈̂TMS(𝑠) = exp[𝑟(𝑎̂†𝑏̂† − 𝑎̂𝑏̂)]. Here 𝜃 is the beam-
splitting angle and 𝑟 is the squeezing parameter. The espective matrix forms 𝑺BS(𝜃) and 𝑺SMS(𝑟) read

𝑺BS(𝜃) =

⎛

⎜

⎜

⎜

⎝

cos 𝜃 sin 𝜃 0 0
− sin 𝜃 cos 𝜃 0 0

0 0 cos 𝜃 sin 𝜃
0 0 − sin 𝜃 cos 𝜃

⎞

⎟

⎟

⎟

⎠

, 𝑺TMS(𝑟) =

⎛

⎜

⎜

⎜

⎝

cosh 𝑟 0 0 sinh 𝑟
0 cosh 𝑟 sinh 𝑟 0
0 sinh 𝑟 cosh 𝑟 0

sinh 𝑟 0 0 cosh 𝑟

⎞

⎟

⎟

⎟

⎠

.

Note that, in the literature, one often uses the transmittivity 𝜏 of the beam-splitter, defined by a rotation
of 𝜃 = arccos(𝜏) in phase space, instead of the angle 𝜃. It is also convenient, for later purposes, to write
𝑺BS(𝜃) = 𝑹(𝜃)⊕𝑹(𝜃), where𝑹(𝜃) is the orthogonal matrix that appears in both diagonal blocks of𝑺BS(𝜃).

1.8. Quantum metrology
Parameter estimation is a key endeavour of physical sciences. The predictions of a theory, for example,
must be tested against experimental measurements. To estimate parameters with high precision, a
reduction in the statistical error is not only desired but necessary. Such a reduction can be achieved
23 After Hungarian-American mathematician John von Neumann (28 December 1903 – 8 February 1957).
24 After Scottish mathematician John Williamson (23 May 1901 – ? 1949).



Avenues of Quantum Field Theory in Curved Spacetime (AQFTCS 2022)
Journal of Physics: Conference Series 2531 (2023) 012016

IOP Publishing
doi:10.1088/1742-6596/2531/1/012016

13

classically by employing 𝑁 independent measurements and averaging the outcomes, thereby resulting in
an error scaling ∝ 𝑁−1∕2 as stated by the central limit theorem. A natural question is what would the role
of quantum features be in estimating a parameter of interest.

Quantum metrology encompasses techniques and strategies to employ genuine quantum features, such
as coherence and entanglement, to design successful strategies for error reduction. Within this field, it has
been shown that the precision can be enhanced if quantum properties such as squeezing and entanglement
are exploited, and optimal estimation strategies for the measurement of the final sate are performed. This
allows for a scaling of the error ∝ 𝑁−1, usually referred to as the Heisenberg limit [100]. Applications
of the techniques are manifold. For instance, we can consider a quantum state undergoing a unitary
transformation that encodes a parameter of interest that is not an observable of the system, such as time,
temperature [101], acceleration, an unknown phase shift between different field modes [102], or small
perturbations due to spacetime changes [103]. Among the plethora of physical systems that can be used
for this purpose, photons are usually the most appropriate quantum systems to be employed due to the
relative ease of their generation, manipulation, and detection [104]. In recent developments, studies on
the estimation of spacetime parameters of the Earth using photons as a realization for quantum metrology
tasks have been proposed [44, 105].

Let us now work with a unitary channel parametrized by Θ, the parameter which we intend to
measure. The channel is implemented by a unitary operator 𝑈̂Θ, which maps an initial state 𝜌̂0 to the
state 𝜌̂Θ = 𝑈̂Θ𝜌̂0𝑈̂

†
Θ. Our ambition is to bound the mean error ⟨(ΔΘ̂)2⟩ on our random variable Θ. The

strategy that we need to employ requires us to distinguish between two states 𝜌̂Θ and 𝜌̂Θ+𝑑Θ that differ by
an infinitesimal change 𝑑Θ of the parameter. We can quantify the distinguishability of these two states
by means of the operational measure called the Fisher information25, which gives a lower bound to the
mean-square error via the Cramér-Rao bound26 as

⟨(ΔΘ̂)2⟩ ≥ (𝑁 (Θ))−1, (11)

where 𝑁 is the number of input probes, the quantity  (Θ) = ∫ 𝑑𝜆𝑝(𝜆|Θ)(𝑑 ln[𝑝(𝜆|Θ)]∕𝑑𝜆)2 is called
the Fisher information, and 𝑝(𝜆|Θ) defines the likelihood function with respect to a chosen positive
operator valued measurement (POVM) {Θ̂𝜆}, with Σ𝜆̂𝜆 = 𝟙 [100]. It can be shown that an even
stronger bound can be achieved by optimizing all possible quantum measurements, thus obtaining
(ΔΘ̂)2 ≥ 1∕[𝑁 (Θ)] ≥ 1∕[𝑁(Θ)], where (Θ) is the quantum Fisher information (QFI) [106]. It
is worth noting that, even though the optimal measurements for which the Cramér-Rao bound becomes
asymptotically tight can be readily computed, implementing them in the laboratory might be extremely
difficult if not impossible, a problem that requires devising suboptimal strategies such as homodyne or
heterodyne detection [107].

The QFI can be computed by means of the fidelity  (𝜌̂, 𝜌̂′) ∶= Tr
((
√

𝜌̂𝜌̂′
√

𝜌̂
)−1∕2) of two quantum

states. In our case, the relation between the QFI and the Fisher information  (𝜌̂Θ, 𝜌̂Θ+𝑑Θ) reads

(Θ) = lim
𝑑Θ→0

8
(

1 −
√


(

𝜌̂Θ, 𝜌̂Θ+𝑑Θ
)

)

𝑑Θ2
. (12)

Here we refrain from using this generic formalism and we exploit instead the covariance matrix formalism
by restricting ourselves to Gaussian states of light with vanishing first moments. This is a good way to
obtain first answers to the problem at hand without the need of arduous algebraic computations necessary
in the more general cases. The states 𝜌̂Θ and 𝜌̂Θ+𝑑Θ will be replaced by their covariance matrices 𝝈Θ and

25 After British polymath Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962).
26 After Swedish mathematician Harald Cramér (25 September 1893 – 5 October 1985) and Indian mathematician Calyampudi
Radhakrishna Rao.
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𝝈Θ+𝑑Θ, and we focus on the case of no initial first moments. The fidelity then reads


(

𝝈Θ,𝝈Θ+𝑑Θ
)

= 4

(

√

𝛾 +
√

𝜆 −

√

(

√

𝛾 −
√

𝜆
)2

− 𝜂

)−1

, (13)

where we have defined 𝛾 ∶= det
(

𝟙 + 𝑖𝛀𝝈Θ𝑖𝛀𝝈Θ+𝑑Θ
)

, 𝜆 ∶= det
(

𝟙 + 𝑖𝛀𝝈Θ
)

det
(

𝟙 + 𝑖𝛀𝝈Θ+𝑑Θ
)

and
𝜂 ∶= det

(

𝛀𝝈Θ +𝛀𝝈Θ+𝑑Θ
)

for simplicity of presentation [108, 109, 107].
These expressions will be of fundamental practical importance when attempting to calculate the errors

on parameter estimation in concrete schemes. They have already been used successfully in the literature
[44, 57]. We will briefly report on their concrete use later on in this work.

2. Gravitational redshift of realistic photons
Here we study the gravitational redshift of realistic photons. The overall idea is to be able to account for
the propagation of the photon in the case where it is mostly confined along the direction of propagation,
and then to map the overall effect induced by the gravitational redshift to a unitary transformation acting
on the photon operator. Thus, propagation from A to B is indistinguishable from an appropriate unitary
transformation acting on the photon at the receiver’s location.

2.1. Effective propagation of realistic photons
We now would like to describe the propagation of realistic photons in curved spacetime. We assume that
there is a timelike Killing vector 𝐾 with ||𝐾|| ∶=

√

−𝐾𝜌𝐾𝜌, and that the photon propagates along a
geodesic given by the solution to ∇𝑃𝑃 = 0. Here 𝑃 ≡ 𝑑∕𝑑𝜆 is a null vector with ||𝑃 ||2 ≡ 𝑃𝜇𝑃 𝜇 = 0.

Let us introduce the vector 𝑛 ∶= 𝐾∕||𝐾||, which is tangent to the path followed by static observers.
We can therefore construct two null vectors 𝑚± ≡ 𝑑∕𝑑𝜆± via

𝑚± ∶= 1
2
(𝑛 ± 𝑚⟂), (14)

where 𝑚⟂ ≡ 𝑑∕𝑑𝜆⟂ is an appropriate spacelike vector normalized by 𝑚⟂𝜇𝑚⟂
𝜇 = 1 that is orthogonal

to 𝑛, i.e., 𝑚⟂
𝜇𝑛𝜇 = 0 and thus it lies on Σ. This also imples that [𝑑∕𝑑𝜏, 𝑑∕𝑑𝜆⟂] = 0. Note that these

conditions are compatible with 𝑚±𝜇𝑚±
𝜇 = 0. Both vectors 𝑚± are future-pointing and 𝑚±

𝜇𝑛𝜇 = −1∕2.
Finally, 𝑚+

𝜇𝑚−𝜇 = −1∕2. Furthermore,

𝑛 = 1
2
(𝑛 + 𝑚⟂) +

1
2
(𝑛 − 𝑚⟂) = 𝑚+ + 𝑚−. (15)

The construction given by (14) and (15) can be understood from standard vector addition rules: we add a
timelike vector to a spacelike vector to obtain the vector of interest [4]. For a pictorial understanding of
the configuration see Figure 1.

We recall the fact that 𝑛(𝜙𝒌(𝑥𝜌)) = −𝑖Ω𝒌𝜙𝒌(𝑥𝜌). This informs us that the most general mode function
𝜙𝒌(𝑥𝜌) can be decomposed as

𝜙𝒌(𝑥𝜌) =
(

𝛼+𝑒
−𝑖Ω𝒌(𝜉+𝜆⟂) + 𝛼−𝑒−𝑖Ω𝒌(𝜉−𝜆⟂)

)

𝜙̃𝒌(𝑦
𝜌
⟂), (16)

where we can easily verify that if we call 𝐸±(𝜉, 𝜆⟂) ∶= exp[−𝑖Ω𝒌(𝜉 ± 𝜆⟂)], we then have: first,
𝑛(𝐸𝜎(𝜉, 𝜆⟂)) = −𝑖Ω𝒌𝐸𝜎(𝜉, 𝜆⟂); second, 𝑚𝜎(𝐸𝜎′(𝜉, 𝜆⟂)) = −𝑖𝛿𝜎𝜎′Ω𝒌𝐸𝜎′(𝜉, 𝜆⟂); third, we have
𝑚⟂(𝐸𝜎(𝜉, 𝜆⟂)) = −(1∕2)𝜎𝑖Ω𝒌𝐸𝜎(𝜉, 𝜆⟂). Here the function 𝜙̃𝒌(𝑦

𝜌
⟂) collects the dependence on the

remaining variables (that parametrize the surfaces Σ). It should be clear that the components 𝐸+(𝜉, 𝜆⟂)
of the wave packet are propagating in the negative 𝜆⟂ direction, while the components 𝐸−(𝜉, 𝜆⟂) of the
wave packet are propagating in the positive 𝜆⟂ direction.
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We now observe that a photon can be engineered with a spatial profile that has many degrees of
freedom. For example, it can have multiple peaks or no easily definable “size” [110, 111]. Nevertheless,
since the discussion of the redshift will effectively require considerations about measurements at a point
(the users are pointlike), we need to be able to focus on the trajectory followed by a particular initial point
at which the photon is located. In this sense, it is easier to assume that the photon is mostly localized
along the direction of propagation, and therefore we assume that we can discard all effects due to the
extension of the photon along directions that are orthogonal to that of propagation. These can be taken
into account separately for general (weakly curved) spacetimes and some work has been dedicated to this
task already in the literature [62, 63].

ξ0

ξΣ

ξf

Σ0

m−

m⊥

m+

nuB

uA

Σf

Σ

ξ

Figure 1. A pictorial representation of the generic scheme considered in this work. Note that, in general,
the notion of perpendicularity in 3 + 1-dimensional curved spacetime cannot be faithfully reproduced.
The figure should be taken as a tool to help visualize the foliation induced by the Killing vector𝐾 as well
as the four-vector decomposition (15).

Our assumption naturally leads us to choose a function 𝐹𝒌0(𝒌) that localizes the photon on a particular
null path. We choose the path parametrized by 𝜆− = 1

2
(𝜉 − 𝜆⟂) without loss of generality, and we set

𝜆− ≡ 𝜆̃ for convenience below. We then impose the constraint

∫ 𝑑3𝑘𝐹𝒌0(𝒌)𝜙𝒌(𝑥𝜌) ≈∫ 𝑑3𝑘𝐹𝒌0(𝒌) 𝑒
−𝑖Ω𝒌(𝜉−𝜆⟂)𝜙̃𝒌(𝑦

𝜌
⟂). (17)

Here we have ignored the coefficient in the expansion (16) since it is irrelevant. Crucially, this implies
that the photon moves along paths of constant 𝜆−.

We then proceed by recalling that vectors as elements of tangent spaces to manifolds naturally
define directional derivatives. In particular, we can compute the directional derivative of 𝐹 s

𝒌0
(𝑥𝜇) =

∫ 𝑑3𝑘𝐹𝒌0(𝒌)𝜙𝒌(𝑥𝜇) along the vector 𝑚−. We find

∇𝑚−

(

𝐹 s
𝒌0
(𝑥𝜇)

)

= ∫ 𝑑3𝑘𝐹𝒌0(𝒌)𝑚−
𝜇∇𝜇

(

𝑒−𝑖Ω𝒌(𝜉−𝜆⟂)𝜙̃𝒌(𝑦
𝜌
⟂)
)

= ∫ 𝑑3𝑘𝐹𝒌0(𝒌)𝑛
𝜇𝜕𝜇

(

𝑒−𝑖Ω𝒌(𝜉−𝜆⟂)𝜙̃𝒌(𝑦
𝜌
⟂)
)

,

(18)
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where we have ∇𝜇𝑓 = 𝜕𝜇𝑓 when the covariant derivative ∇𝜇 acts on functions. Here we have also written
𝑚− = 𝑛 − 𝑚+ and we have used the fact that 𝑚+

𝜇𝜕𝜇(𝑒−𝑖Ω𝒌(𝜉−𝜆⟂)𝜙̃𝒌(𝑦
𝜌
⟂)) = 𝑚+(𝑒−𝑖Ω𝒌(𝜉−𝜆⟂))𝜙̃𝒌(𝑦

𝜌
⟂) = 0.

We now recall that 𝑛 ≡ ||𝐾||

−1(𝑑∕𝑑𝜉) and obtain

∇𝑚−
(𝐹 s

𝒌0
(𝑥𝜇)) ≈ − 𝑖∫ 𝑑3𝑘𝐹𝒌0(𝒌)

Ω𝒌
√

−𝐾𝜌𝐾𝜌
𝑒−𝑖Ω𝒌(𝜉−𝜆⟂)𝜙̃𝒌(𝑦

𝜌
⟂). (19)

Finally, we use following reasoning: since we have (𝑑∕𝑑𝜉)𝜙𝒌(𝑥𝜌) = −𝑖Ω𝒌𝜙𝒌(𝑥𝜌) and 𝜏 =
√

−𝐾𝜇𝐾𝜇𝜉27
we can therefore see that it is natural to recast the eigenvalue equation for the modes 𝜙𝒌(𝑥𝜌) as
(𝑑∕𝑑𝜏)𝜙𝒌(𝑥𝜌) = −𝑖𝜔𝒌𝜙𝒌(𝑥𝜌), where 𝜔𝒌 ∶= Ω𝒌∕(

√

−𝐾𝜌𝐾𝜌). We also introduce 𝜆̃⟂ ∶= ||𝐾||𝜆⟂. Thus,
using the identity 𝐴̂𝒌0(𝑥

𝜌)|𝜆̃ = ∫ 𝜆̃
𝜆̃0
𝑑𝜆̃′∇𝑚𝐴̂𝒌0(𝑥

𝜌) + 𝐴̂𝒌0(𝑥
𝜌)|𝜆̃0 from calculus, we ultimately have

𝐴̂𝒌0(𝑥
𝜌)|𝜆̃ ≈ −𝑖∫

𝜆̃

𝜆̃0
𝑑𝜆̃′ ∫ 𝑑3𝑘𝜔𝒌 𝑒

−𝑖𝜔𝒌(𝜏−𝜆̃⟂)𝐹𝒌0(𝒌)𝜙̃𝒌(𝑦
𝜌
⟂)𝑎̂𝒌 + 𝐴̂𝒌0(𝑥

𝜌)|𝜆̃0 . (20)

We now note that 𝑒−𝑖𝜔(𝜏−𝜆̃⟂) is an eigenfunction of 𝑚− = 𝑑∕𝜆− and these confined photons follow
trajectories of constant 𝜆−, i.e., 𝜆̃⟂ = 𝜆̃⟂(0) + 𝜏 − 𝜏0. We are therefore left with

𝐴̂𝒌0(𝑥
𝜌)|𝜆̃ ≈ ∫ 𝑑3𝑘 𝑒−𝑖𝜔𝒌(𝜏−𝜆̃⟂)𝐹𝒌0(𝒌)𝜙̃𝒌(𝑦

𝜌
⟂)𝑎̂𝒌, (21)

with the understanding that const= 𝜆̃ = 1
2
(𝜏− 𝜆̃⟂) is evaluated at the hypersurface Σ of interest. This tells

us the respective values of 𝜏 and 𝜆̃⟂ at the point of interest.
We here note that, in general, quantization of the Hilbert spaces using 𝜏 or 𝜆̃ as external parameter at

this stage in the Hamiltonian formulation can lead to inequivalent results. For this reason, we understand
the expression (21) as follows: first, we perform the computations that lead here for a classical field, where
𝐴𝒌0(𝑥

𝜌)|𝜆̃ are functions and not operators. This is obtained by demoting 𝑎̂𝒌 to scalar Fourier coefficients28.
Once the condition (21) is obtained for the classical computations, we promote the coefficients 𝐴̂𝒌0(𝑥

𝜌)|𝜆̃
to operators and quantize. This is the procedure that we assume is implicit in the process described above.

The expression (21) can be understood as follows: the evolution of a photon operator propagating
between two static observers Alice and Bob, which is strongly confined along the direction of propagation,
can be obtained as the evolution of the operator along the path of the observers once they have information
of their relative positions. We can therefore identify 𝐴𝒌0(𝑥

𝜌)|𝜆̃ ≡ 𝐴𝒌0(𝑥
𝜌)|𝜏 with this understanding in

mind. This is the key result of our work.
We now proceed and note that, since we have enforced the approximation that the photons are

strongly confined along the direction of propagation, it is convenient to change from integration variables
𝒌 ≡ (𝑘x, 𝑘y, 𝑘z) to 𝒌n ≡ (𝜔, 𝑘⟂,1, 𝑘⟂,2). We can achieve this because 𝜔𝒌 = 𝜔(𝒌), and therefore we can
change variables accordingly, at least in principle. This, in turn, means that we will be able to write

𝐴̂𝒌0(𝑥
𝜌)|𝜏 = ∫ 𝑑𝜔 𝑒−𝑖𝜔(𝜏−𝜆̃⟂) ∫⟂,1,2

𝑑2𝑘𝐹𝒌n,0
(𝒌(𝒌n)) 𝜙̃𝒌(𝒌n)(𝑦

𝜌)|𝜏 𝑎̂𝒌(𝒌n). (22)

We then focus on the operator 𝑎̂𝒌(𝒌n). Our aim is to show that we can effectively write 𝑎̂𝒌 ≈ 𝑓 (𝒌n)𝑎̂𝜔 for
an appropriate function 𝑓 (𝒌n). The notation 𝑎̂𝜔 used here stands to indicate that 𝑎̂𝜔 is a function of 𝜔 and
two other constants, which are effectively dropped. We would then like to absorb the function 𝑓 (𝒌n) into
a new profile function 𝐹𝜔0

(𝜔). To arrive at this conclusion we start by recalling that [𝑎̂𝒌, 𝑎̂𝒌′] = 𝛿3(𝒌−𝒌′).

27 Notice that 𝑑𝜏 =
√

−𝐾𝜇𝐾𝜇𝑑𝜉 implies 𝜏 =
√

−𝐾𝜇𝐾𝜇𝜉 since
√

−𝐾𝜇𝐾𝜇 is independent on 𝜉.
28 After French mathematician and physicist Jean-Baptiste Joseph Fourier (21 March 1768 – 16 May 1830).
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We then write 𝛿3(𝒌−𝒌′) = 𝛿3(𝒌(𝒌n) −𝒌′(𝒌n)) and would have 𝛿3(𝒌−𝒌′) = [𝑎̂𝒌, 𝑎̂
†
𝒌′
] = [𝑎̂𝒌(𝒌n), 𝑎̂

†
𝒌′(𝒌′n)

] =

Θ(𝒌n)Θ(𝒌′n)𝛿
3(𝒌n − 𝒌′n). The Θ-functions do not need to be determined at this stage. We therefore have

that 𝑎̂𝒌 = 𝑎̂𝒌(𝒌n) = Θ(𝒌n)𝑎̂𝒌n
. We also know that

[

𝐴̂𝒌0(𝑥
𝜌)|𝜏 , 𝐴̂

†
𝒌0
(𝑥𝜌)|𝜏

]

= 1. Using (22) and the relation
𝑎̂𝒌(𝒌n) = Θ(𝒌n)𝑎̂𝒌n

we have

1 =
[

𝐴̂𝒌0(𝑥
𝜌)|𝜏 , 𝐴̂

†
𝒌0
(𝑥𝜌)|𝜏

]

= ∫ 𝑑𝜔∫⟂,1,2
𝑑2𝑘|𝐹𝒌n,0

(𝒌(𝒌n)) 𝜙̃𝒌(𝒌n)(𝑦
𝜌)|𝜏Θ(𝒌n)|2. (23)

We can also write this identity as 1 = ∫ 𝑑𝜔|𝐹𝜔0
(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))|2, where we have introduced the functions

𝐹𝜔0
(𝜔) and 𝜙̃𝜔(𝑦𝜇(𝜏)) appropriately.
Recalling that we have assumed that the photon has most support along the direction of propagation,

we come to the conclusion that we can approximate

∫⟂,1,2
𝑑2𝑘𝐹𝒌n,0

(𝒌(𝒌n)) 𝜙̃𝒌(𝒌n)(𝑦
𝜌)|𝜏Θ(𝒌n)𝑎̂𝒌n

≈ 𝐹𝜔0
(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))𝑎̂𝜔, (24)

where the operator 𝑎̂𝜔 is effectively defined by this relation and satisfies [𝑎̂𝜔, 𝑎̂′†𝜔 ] = 𝛿(𝜔 − 𝜔′)
while all other commutators vanish. Notice that ∫ 𝑑𝜔|𝐹𝜔0

(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))|2 = 1 due to the constraint
∫ 𝑑3𝑘|𝐹𝒌0,𝑥|Σ(𝒌)|

2 = 1 discussed above, where 𝐹𝒌0,𝑥|Σ(𝒌) ∶= 𝐹𝒌0(𝒌)𝜙𝒌(𝑥𝜇)|Σ. This is all consistent with
the fact that the photon operators (22) represent physical photons with a certain bandwidth profile.

The defining expression (24) for the operators 𝑎̂𝜔 is, stricto sensu, incorrect at face value because 𝑎̂𝒌n
and 𝑎̂𝜔 act on different Hilbert spaces — the Hilbert spaces are determined by different numbers of degrees
of freedom and they are not unitarily equivalent. Therefore, we will use the notation introduced here with
the understanding that the Hilbert space determined by the 𝑎̂𝜔 stands for, in a strict mathematical sense, a
Hilbert space equivalent to that of the operators 𝑎̂𝒌n

. Furthermore, we restrict ourselves to the subspaces
of constant 𝑘1, 𝑘2 given the effective strong confining of the photon to the direction perpendicular to 𝑘1
and 𝑘2. Therefore, the operators 𝑎̂𝜔 should read 𝑎̂𝜔,𝑘1,𝑘2 . We will drop the dependence on 𝑘1, 𝑘2 and
assume that it is from now on understood that we work in the subspace of the total Hilbert space defined
by constant (vanishing) 𝑘1, 𝑘2.

Finally, combining all of the above means that we can express the field operator 𝐴̂𝜔0
at a particular

(proper) time 𝜏 as

𝐴̂𝜔0
∶= ∫

+∞

0
𝑑𝜔 𝑒−𝑖𝜔(𝜏−𝜆̃⟂) 𝐹𝜔0

(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))𝑎̂𝜔, (25)

where we have assumed that the frequency degree of freedom is always positive. Note that this final
expression comes with the added constraint ∫ +∞

0 𝑑𝜔 |𝐹𝜔0
(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))|2 = 1 in order for the canonical

commutation relations [𝐴̂𝜔0
, 𝐴̂†

𝜔0
] = 1 to be satisfied. We emphasize that this is an expression that is valid

exactly only if the observers are static. When the spacetime is dynamic, or there are nontrivial contribution
from the directions perpendicular to that of the photon propagation, new work will be necessary to provide
the correct expression.

2.2. Gravitational redshift of sharp-momentum photon operators
The effect of gravitational redshift on ideal free (quantum) photons, that is, on the excitations of the
quantized free electromagnetic field, becomes manifest upon measurement. If our two observers Alice
and Bob wish to determine the nature and magnitude of such effect they can naïvely perform the following
protocol which is borrowed from an empirical approach:
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Protocol—Alice and Bob are static with respect to each other and in flat spacetime. Each one of
them is endowed with ideal photon sources and detectors, and we assume that there are no sources
of decoherence, noise or other environmental disturbances. In this case, Alice prepares and sends a
localized photon to Bob, who will detect the photon on arrival. He can compare the properties of such
photon with those of the one that he keeps as local reference, and he will find that they match. This simple
setup is depicted in the lower part of Figure 2. A second scenario sees Alice and Bob′ located at a different
position (e.g., on a satellite) in a curved spacetime. Alice sends a photon to Bob′, who will potentially
detect a (gravitational) redshift within the incoming photon, i.e., any frequency 𝜔′ as measured locally
by his clock will not coincide numerically with the sharp frequency 𝜔 of the sent photon. The scheme is
depicted in the upper part of Figure 2.

A

B′

B
x

y

z

Figure 2. Alice and Bob wish to perform the Protocol described above.

Now we can make a key observation. As far as Bob is concerned, i.e., from the perspective of his
isolated laboratory, the photon sent by Alice might have changed with respect to the one he was expecting,
and therefore he can study the properties of the transformation involved. He can do this irrespective of
where the incoming photon has originated or which specific physical process it has witnessed during its
flight. Concretely, this means that Bob can assign a channel to the process that affected the incoming
photon, and seek for its properties. In particular, Bob wishes to implement the transformation 𝑇 that acts
on the incoming operators 𝑎̂𝜔 as a unitary operation that maps them to final operators 𝑎̂𝜔′ .

Bob therefore assumes that there is a transformation 𝑇 (𝛼) ∶ 𝜔 → 𝜔′ = 𝛼𝜔 on each sharp frequency
𝜔 of his local spectrum. Note that here we have not used any particular form of the parameter 𝛼, and
indeed we do not need to specify any of its properties. For the moment we do not even assume that it is
related to the gravitational redshift. Bob then looks for a unitary transformation 𝑈̂ (𝛼) that implements
𝑇 (𝛼) through the following relation

𝑎̂𝜔′ = 𝑈̂ †(𝛼) 𝑎̂𝜔 𝑈̂ (𝛼) = 𝑎̂𝛼𝜔 (26)

for all 𝛼, where 𝑈̂ †(𝛼)𝑈̂ (𝛼) = 1.
We now recall that the operators 𝑎̂𝜔 are required to satisfy the canonical commutation relations

[𝑎̂𝜔, 𝑎̂
†
𝜔′] = 𝛿(𝜔−𝜔′) while all others vanish. We also recall the fact that [𝑎̂𝛼𝜔, 𝑎̂

†
𝛼𝜔′] = 𝛿(𝛼𝜔− 𝛼𝜔′), and

𝛿(𝑓 (𝑥)) =
∑

𝑛 𝛿(𝑥 − 𝑥0,𝑛)∕|𝑓 ′(𝑥0,𝑛)|, where 𝑥0,𝑛 are the simple zeros of the function 𝑓 (𝑥). This means
that 𝛿(𝛼𝜔 − 𝛼𝜔′) = |𝛼|−1𝛿(𝜔 − 𝜔′). Thus we can write

𝛿(𝜔 − 𝜔′) = 𝑈̂ †(𝛼)𝛿(𝜔 − 𝜔′)𝑈̂ (𝛼) = 𝑈̂ †(𝛼)
[

𝑎̂𝜔, 𝑎̂
†
𝜔′

]

𝑈̂ (𝛼) =
[

𝑎̂𝛼𝜔, 𝑎̂
†
𝛼𝜔′

]

= 1
|𝛼|
𝛿(𝜔 − 𝜔′). (27)
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It is clear that this series of equalities can be satisfied only if 𝛼 = 𝑒𝑖𝜃 for some angle 𝜃. If we were to
identify 𝛼 with the redshift factor, i.e., 𝛼 = 𝜒2, this would also imply 𝜒 = 1. Such identification would be
motivated by the fact that the formally identical transformation 𝜔′ = 𝜒2𝜔 is given by the main expression
(5). This means that only non-redshifted photons can be thought of as having witnessed the action of a
unitary channel. We therefore conclude that, if the unitarity of the transformation is desired – and we
expect it to be since gravitational redshift can be “undone” by simply reflecting the photon back to the
source – the simple assumption that 𝑇 (𝜒) act via 𝑇 (𝜒) ∶ 𝜔→ 𝜔′ = 𝜒2𝜔 is incorrect.

One way to understand the inconsistency that has arisen in (27) is to note that, in general, the magnitude
of the shift for each frequency is different. In fact, |𝛼𝜔′

| > |𝛼𝜔| for 𝜔′ > 𝜔. Furthermore, the difference
between two frequencies is “stretched” or “compressed” by this process, since also |𝛼𝜔′−𝛼𝜔| > |𝜔′−𝜔|
for |𝛼| > 1, and |𝛼𝜔′ − 𝛼𝜔| < |𝜔′ − 𝜔| for |𝛼| < 1. However, the Dirac delta-function, which is not
a function in the strict sense, does not have a “width” that can be stretched or compressed. One can say
that the shape of the Dirac delta is “rigid” in this sense and does not change. We will solve the problem
below by considering field operators that have compact support.

2.3. Gravitational redshift of realistic photon operators
We have considered the effects of gravitational redshift on ideal photons that have a sharp momentum.
Here we move on to consider the effects of gravitational redshift on realistic photons.

The field operator 𝐴̂𝜔0
for the realistic photon is given by (25). In this section we would like to ask a

question similar to the one posed above by Bob by replacing sharp momentum frequency field operators
with realistic ones. The transformation 𝑇 (𝛼) ∶ 𝜔 → 𝜔′ = 𝛼𝜔 induces a unitary transformation of the
operator 𝑎̂𝜔 only, and is poised to transform 𝐴̂𝜔0

→ 𝐴̂′
𝜔0

= 𝑈̂ †(𝛼)𝐴̂𝜔0
𝑈̂ (𝛼). This means that

𝐴̂𝜔0
= ∫

+∞

0
𝑑𝜔𝐹𝜔0

(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏))𝑎̂𝜔
𝑇 (𝛼)
→ 𝐴̂′

𝜔0
= ∫

+∞

0
𝑑𝜔𝐹𝜔0

(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏))𝑎̂𝛼𝜔. (28)

Once more, assuming that the transformation (26) holds, it is easy to compute the explicit expression for
the commutator of the operators 𝐴̂′

𝜔0
, 𝐴̂′†

𝜔0
after the redshift has applied. We have

1 = 𝑈̂ †(𝛼)𝑈̂ (𝛼) = 𝑈̂ †(𝛼)
[

𝐴̂𝜔0
, 𝐴̂†

𝜔0

]

𝑈̂ (𝛼) =
[

𝐴̂′
𝜔0
, 𝐴̂′†

𝜔0

]

= 1
|𝛼|
. (29)

As we found above, this equation can be satisfied only for the trivial case |𝛼| = 1, which would be
equivalent to the case of no redshift 𝜒 = 1 after identification 𝛼 = 𝜒2. It is clear that we have not
solved the problem by using the transformation 𝑇 (𝛼) on realistic operators, and therefore we conclude
that it is not possible to obtain gravitational redshift in the form of a linear shift of the spectrum of sharp
frequencies 𝜔 as a unitary operation acting on the set of field modes {𝑎̂𝜔} alone. This result corroborates
the claim that the gravitational redshift cannot be interpreted simply as a shift in the sharp frequencies of
the photons for all frequencies of the spectrum. Below we proceed to solve this conundrum.

2.4. Quantum modelling of gravitational redshift
We have now understood that we need to refine the question posed above by Bob. Specifically, Bob will
ask the following: which transformation 𝑇 (𝛼) will be implemented by a unitary operator when acting
on realistic photons? To answer this question, we work backwards and note that Bob will describe the
received photon as 𝐴̂𝜔′

0
= ∫ ∞

0 𝑑𝜔𝐹 ′
𝜔′
0
(𝜔)𝑒−𝑖𝜔𝜏𝜙′

𝜔(𝑦
𝜇(𝜏)) 𝑎̂𝜔 as a function of the frequency 𝜔 as measured

locally in his laboratory with respect to his proper time 𝜏, while the expected photon has the expression
𝐴̂𝜔0

= ∫ ∞
0 𝑑𝜔𝐹𝜔0

(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙𝜔(𝑦𝜇(𝜏)) 𝑎̂𝜔. Bob then imposes a transformation where each frequency
variable 𝜔 that appears in the definition of 𝐴̂𝜔0

transforms according to 𝑇 (𝛼) ∶ 𝜔 → 𝜔′ = 𝛼𝜔, see [43].
This means that the transformation for Bob reads

𝐴̂𝜔0
= ∫

∞

0
𝑑𝜔𝐹𝜔0

(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏))𝑎̂𝜔
𝑇 (𝛼)
→ 𝐴̂′

𝜔′
0
= 𝛼 ∫

∞

0
𝑑𝜔𝐹𝜔0

(𝛼𝜔)𝑒−𝑖𝑔(𝛼)𝜔(𝜏−𝜆̃⟂)𝜙̃𝛼𝜔(𝑦𝜇(𝜏))𝑎̂𝛼𝜔, (30)
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where Bob needed to introduce a general function 𝑔(𝛼) in front of 𝜔𝜏 because of the fact that the photon
sent is generated with respect to the proper time of Alice, which does not coincide with his own. Thus,
according to (19), (20) and the discussion in between, he needs to maintain some additional freedom in
order to compensate for the difference in proper time between his clock and the clock at Alice’s location.
This function will be determined below. Note that we now correctly have [𝐴̂′

𝜔′
0
, 𝐴̂

′†
𝜔′
0
] = [𝐴̂𝜔0

, 𝐴̂†
𝜔0
] = 1

since ∫ +∞
0 |𝐹𝜔0

(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))|2 = 1 as it is immediate to verify directly.
Bob is now tempted to make the following identification:

𝐹 ′
𝜔′
0
(𝜔)𝜙̃′

𝜔(𝑦
𝜇(𝜏)) ≡

√

𝛼 𝐹𝜔0
(𝛼𝜔)𝜙̃𝛼𝜔(𝑦𝜇(𝜏)), (31)

since it is easy to see that ∫ +∞
0 |𝐹𝜔0

(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))|2 = 1 implies ∫ +∞
0 |𝐹 ′

𝜔′
0
(𝜔)𝜙̃′

𝜔(𝑦
𝜇(𝜏))|2 = 1.

If the identification (31) holds, it follows that Bob should be interested in then looking at the operator
𝑎̂𝛼𝜔. Unfortunately, he already knows that

[

𝑎̂𝛼𝜔, 𝑎̂
†
𝛼𝜔′

]

= |𝛼|−1𝛿(𝜔 − 𝜔′). Nevertheless, he is not
discouraged and notices that he can introduce the operators

𝑎̂′𝜔 ≡
√

|𝛼| 𝑎̂𝛼𝜔, (32)

which now have the correct canonical commutation relations [𝑎̂′𝜔, 𝑎̂
′†
𝜔′] = 𝛿(𝜔−𝜔′) as can be checked by

direct inspection.
Bob is finally left with dealing with the arbitrary function 𝑔(𝛼). He starts by noting that at Alice’s

location she will have prepared the photon using her proper time 𝜏A and frequencies 𝜔A. In his own
location, however, Bob will use instead his proper time 𝜏B and frequencies 𝜔B. Therefore, if Alice has
sent a photon with phase exp[−𝑖𝜔A(𝜏A − 𝜆̃⟂,A)], Bob will define the expected photon in his laboratory
with a phase exp[−𝑖𝜔B(𝜏B − 𝜆̃⟂,B)]. Here we recall that 𝜆̃⟂ ∶= ||𝐾||𝜆⟂ and therefore 𝜆̃⟂,𝐽 ∶= ||𝐾||𝐽𝜆⟂,
where 𝐽 =A,B. The crucial observation here is that, according to the transformations

𝜔B
𝜔A

=

√

−𝐾𝜌𝐾𝜌|𝑥A
√

−𝐾𝜌𝐾𝜌|𝑥B

= 𝜒2 =
𝜏A
𝜏B

⇒ 𝜔B𝜏B = Ω𝜉Σ = 𝜔A𝜏A and 𝜆̃⟂,A𝜔A = Ω𝜆⟂ = 𝜆̃⟂,B𝜔B. (33)

These equations require us to make a few considerations. First it is clear that, if Alice has prepared
the photon at time 𝜏A,0 it will be received at Bob’s location at time 𝜏B = Δ𝜏B + 𝜏B,0, where 𝜏B,0
denotes the agreed upon local time at which he believes the photon has left Alice’s lab, while Δ𝜏B
is the lapse of time that he will associate to the travel. Therefore, 𝜏A is the time at which Alice
believes the photon has arrived, and 𝜏A and 𝜏B are the proper times associated to the hypersurface Σ
of arrival. Both 𝜏A and 𝜏B can be obtained with respect to the Killing vector parameter 𝜉 using the
relation 𝜏J =

√

−𝐾𝜇𝐾𝜇|J 𝜉 for J=A,B. This is also true for the parameter 𝜆̃⟂ and therefore we can write
𝜏B − 𝜆̃⟂,B = Δ𝜏B + 𝜏B,0 −Δ𝜆̃⟂,B − 𝜆̃⟂,B,0. Since our photon moves along paths of constant 𝜆̃− = 𝜏 − 𝜆̃⟂,
where 𝜆̃− = 𝜆−∕||𝐾||, it follows that 𝜆̃−,0 = 𝜏B − 𝜆̃⟂,B = Δ𝜏B + 𝜏B,0 −Δ𝜆̃⟂,B − 𝜆̃⟂,B,0 for an appropriate
constant 𝜆̃−,0. Therefore, the photon initially located around 𝜆̃⟂,B,0 = 𝜏B,0−𝜆̃−,0 at time 𝜏B,0, is now located
around Δ𝜆̃⟂,B + 𝜆̃⟂,B,0 = Δ𝜏B + 𝜏B,0 − 𝜆̃−,0 after a laps of time Δ𝜏B. Since these phases are independent
on the redshift, by the very definition of the proper time and the frequencies measured locally, it is natural
for Bob to set 𝑔(𝛼) = 1. Furthermore, 𝜔𝜆̃−,0 = 𝜔(𝜏 − 𝜆̃⟂) = 𝜔(Δ𝜏 + 𝜏0 − Δ𝜆̃⟂ − 𝜆̃⟂,0) locally according
to Bob. The pictorial description is again in Figure 1.

Bob now can fix the parameter 𝛼 for the case of interest by noting that the transformation (30) leaves
the phase 𝜔(𝜏 − 𝜆̃⟂) invariant. The redshift (6) is the physical transformation that also leaves the phase
𝜔(𝜏 − 𝜆̃⟂) invariant. Therefore, Bob sets 𝛼 = 𝜒2 which gives him the following transformation law for
the bandwidth function of the physical photon:

𝐹𝜔0
(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏)) → 𝐹 ′

𝜔′
0
(𝜔)𝜙̃′

𝜔(𝑦
𝜇(𝜏)) ≡ 𝜒 𝐹𝜔0

(𝜒2𝜔)𝜙̃𝜒2𝜔(𝑦𝜇(𝜏)), (34)
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as well as the transformation law for the physical photon operator:

𝐴̂𝜔0
→ 𝐴̂′

𝜔′
0
= 𝑈̂ (𝜒)†𝐴̂𝜔0

𝑈̂ (𝜒) = ∫

+∞

0
𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝐹 ′

𝜔′
0
(𝜔)𝜙̃′

𝜔(𝑦
𝜇(𝜏))𝑎̂𝜔. (35)

These two equations are the main expressions of this work.

2.5. Gravitational redshift as a mode-mixer
We have shown that gravitational redshift can be viewed as a canonical transformation between
a realistic photon operator and another one, thus preserving the canonical commutation relations.
We also note that since 𝑎̂𝜔|0⟩ = 0 we also have that 𝐴̂′

𝜔′
0
|0⟩ = 𝐴̂𝜔0

|0⟩ = 0. The

functions 𝐹𝜔0
(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏)) can be seen as an element of the orthonormal basis of the

field expansion, which we can construct by seeking all functions 𝐹𝜆(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏)) that are
orthogonal to 𝐹𝜔0

(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏)). Here 𝜆 is a collection of appropriate labels for the other
mode functions and the exact nature of these labels is irrelevant. Orthonormality means that
∫ ∞
0 𝐹 ∗

𝜆 (𝜔)𝐹𝜔0
(𝜔)|𝜙̃𝜔(𝑦𝜇(𝜏))|2 = 0 for all 𝜆 and ∫ ∞

0 𝐹 ∗
𝜆 (𝜔)𝐹𝜆′(𝜔)|𝜙̃𝜔(𝑦

𝜇(𝜏))|2 = 𝛿(𝜆 − 𝜆′). Notice that
the map 𝑇 can be seen as also inducing a transformation of the set {𝜙𝒌(𝑥𝜌)} of basis modes to the new
set {𝐹𝜔0

(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏)), 𝐹𝜆(𝜔)𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝜙̃𝜔(𝑦𝜇(𝜏))} of basis modes, which is not uncommon in
quantum field theory in flat or curved spacetime. For example, it appears in the derivation of the Unruh
effect, where Unruh modes are obtained as particular linear combinations of Minkowski modes [75, 76].

We can construct the realistic photon operators 𝐴̂𝜆 via

𝐴̂𝜆 ∶= ∫

+∞

0
𝑑𝜔𝑒−𝑖𝜔(𝜏−𝜆̃⟂)𝐹𝜆(𝜔)𝜙̃𝜔(𝑦𝜇(𝜏))𝑎̂𝜔, (36)

which obey the equal time canonical commutator relations [𝐴̂𝜔0
, 𝐴̂𝜆] = 0 and [𝐴̂𝜆, 𝐴̂

†
𝜆′
] = 𝛿(𝜆 − 𝜆′).

Furthermore, the transformations (34) and (35) apply appropriately to all of the photon operators
{𝐴̂𝜔0

, 𝐴̂𝜆}, and thus between bases {𝐹𝜔0
, 𝐹𝜆} and {𝐹 ′

𝜔′
0
, 𝐹 ′

𝜆′
} of mode functions.

We now collect all field operators {𝐴̂𝜔0
, 𝐴̂𝜆} in the vector 𝕏̂ ∶= (𝐴̂𝜔0

, 𝐴̂𝜆1 ,… , 𝐴̂†
𝜔0
, 𝐴̂†

𝜆1
,…)Tp. Then,

the transformation (35) implies that there exists a symplectic matrix 𝑺(𝜒) such that

𝕏̂(𝜒) ∶= 𝑈̂ †(𝜒) 𝕏̂ 𝑈̂ (𝜒) ≡ 𝑺(𝜒) 𝕏̂. (37)

We have already presented the form of a generic symplectic matrix 𝑺 in Subsection 1.6. We note that,
in the present case, there is no mixing between creation and annihilation operators and therefore the
Bogoliubov beta-coefficients vanish, i.e., 𝑩 ≡ 0. Thus, we see that 𝑺(𝜒) = 𝑼 (𝜒)⊕𝑼 ∗(𝜒), where 𝑼 (𝜒)
is a unitary matrix [96].

Let us pick 𝑁 − 1 particular modes 𝐴̂𝜔𝑛 with 𝑛 ∈  ∶= 1, ..., 𝑁 − 1 and then build the operator 𝐴̂⟂
via the relation

𝐴̂⟂ ∶=
∑

𝜆′
𝑐𝜆′𝐴̂𝜆, (38)

where the sum is over all remaining operators labelled by 𝜆′ (i.e., except for those in the set {𝐴̂𝜔𝑛}|𝑛∈).
Clearly, we must have: first,

∑

𝜆′ |𝑐𝜆′|
2 = 1; second, [𝐴̂𝜔𝑛 , 𝐴̂

†
𝜔𝑚
] = 𝛿𝑛𝑚; and third, [𝐴̂⟂, 𝐴̂

†
⟂] = 1, while

all other commutators vanish.
We can then construct the vector 𝕏̂r ∶= (𝐴̂𝜔1

, 𝐴̂𝜔2
,… , 𝐴̂𝜔𝑁 , 𝐴̂⟂)Tp and therefore (37) simplifies to

𝕏̂r(𝜒) ∶= 𝑈̂ †(𝜒) 𝕏̂r 𝑈̂ (𝜒) ≡ 𝑼 (𝜒) 𝕏̂r. (39)
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A unitary symplectic transformation is known in quantum optics as a mode-mixer [61]. Let us select and
employ 𝑁 − 1 modes of interest and 1 mode 𝐹⟂ ≡ 𝐹𝑁 that will constitute the “orthogonal” space, the
totality of which form an orthonormal basis {𝐹𝑛}. This basis will be mixed into a new one, which we
divide accordingly into 𝑁 − 1 new modes and 1 orthogonal one 𝐹 ′

⟂ ≡ 𝐹 ′
𝑁 , also forming an orthonormal

basis {𝐹 ′
𝑛}. We can then see see that we can construct (𝑁 − 1)(𝑁 − 1 + 1) = (𝑁 − 1)𝑁 independent

complex overlap functions of the form ⟨𝐹 ′
𝑛 , 𝐹𝑚⟩ for 𝑛, 𝑚 = 1, ..., 𝑁 − 1 including both the modulus and

the phase. The magnitude of the overlaps ⟨𝐹 ′
𝑛 , 𝐹𝑁⟩ for 𝑛 = 1, ..., 𝑁 − 1 is fixed by the magnitudes

|⟨𝐹 ′
𝑛 , 𝐹𝑚⟩| since the transformation between the two bases is canonical. We are left, however, with

𝑁 complex phases arg(⟨𝐹 ′
𝑛 , 𝐹𝑁⟩) that remain free parameters. The remaining overlaps ⟨𝐹 ′

𝑁 , 𝐹𝑛⟩ with
𝑛 = 1, .., 𝑁 − 1 are again fixed completely by the previous procedure. Thus, the total amount of free
parameters is 𝑁(𝑁 − 1) +𝑁 = 𝑁2 = dim(𝑈 (𝑁)).29 The group can be reduced to 𝑆𝑈 (𝑁) by extracting
from the mixing matrix 𝑈̂ (𝜒) an overall phase that can be set to 1. The possibility to perform these
identifications has already been discussed in the literature [112].

Box 5: Example: the Beamsplitter

We now apply the theoretical results discussed above. As an example we consider the case where 𝑁 = 2.
In this case, we will have only the modes 𝐴̂𝜔0

and 𝐴̂⟂, where 𝐴̂𝜔0
is the mode of interest and 𝐴̂⟂ collects

the remaining elements of the basis that we are not interested in.
Our vectors of operators read 𝕏̂r ∶= (𝐴̂𝜔0

, 𝐴̂⟂)Tp and 𝕏̂r(𝜒) ∶= (𝐴̂′
𝜔0
, 𝐴̂′

⟂)
Tp, and we can write

𝕏̂r(𝜒) = 𝑼 (𝜒)𝕏̂r, with 𝑼 (𝜒) =
(

cos 𝜃 𝑒𝑖𝜙 sin 𝜃
−𝑒−𝑖𝜙 sin 𝜃 cos 𝜃

)

,

and we have 𝜃 = 𝜃(𝜒) and 𝜙 = 𝜙(𝜒). The angle 𝜃 and phase 𝜙 are obtained by employing the overlap of
the two modes considered. In particular we have

cos 𝜃(𝜒) ≡ |⟨1′𝜔0
|1𝜔0

⟩| and 𝜙(𝜒) ≡ arg(⟨1′𝜔0
|1⟂⟩),

where we have defined |1𝜔0
⟩ ∶= 𝐴̂†

𝜔0
|0⟩ and |1′𝜔0

⟩ ∶= 𝐴̂′†
𝜔0
|0⟩. It is possible to verify directly that

these expressions give the desired result. Note that we have set the phase arg(⟨1′𝜔0
|1𝜔0

⟩) to zero out of
convenience and without loss of generality.

3. Applications
Here we report on a few applications of the predictions of this work that have been proposed in the
literature. These are not exhaustive of all possibilities, which we leave open for study in future work.

3.1. Space-based quantum networks
Quantum information tasks require the distribution of physical states that contain entanglement, which
is the paramount resource for quantum information processing [36]. Photons are a core system for the
establishment of distant entangled nodes [113, 114, 115, 116, 117], and they can be distributed either via
optical fibre or free space links. Optical fibres are a convenient solution given the existing network which
makes many options readily available. However, propagation in fibre is subject to significant distance
limitations since photon loss limits the reachable distance to few hundreds of kilometres [118, 119]. This,
in turn, implies the need of a significant number of quantum repeaters in order to establish entangled states
over useful distances [120]. Space-based links are an obvious alternative in which photons are exchanged
between nodes placed at different heights of the Earth’s gravitational potential and propagate in free space.
29 Note that this explanation clarifies the similar degree counting in [59].
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The Micius satellite30 of the Chinese academy of Sciences (CAS) is an example of a dedicated (quantum)
technology to study entanglement distribution between distant sources [121, 122].

Space-based science suffers from the obvious problem of being affected by gravity. In general, signals
propagating between users located at different heights in the gravitational potential of a planet can lead to
unwanted effects on the state of systems themselves. To date, many experiments have been performed to
demonstrate single- and multi-photon exchange through free space links [114, 123, 124, 125]. Among the
foreseen applications are quantum key distribution (QKD) [123], Quantum Communication [126], and
Distributed Quantum Computing [127]. Regardless of the successes accrued so far, the level of precision
of quantum systems is continuously increasing, leaving open the window to study the influence due to
relativistic effects.

Quantum Key Distribution

Quantum Key Distribution (QKD) is a protocol that enables two (or more) users to establish a common
secret shared key [128, 129, 130]. The basic idea is that Alice and Bob will attempt to share a secret key
to be used in an encryption scheme, and they will try to detect any eavesdropper. The two users require a
random number generator and a scheme to encode classical bits into polarization states of photons, and to
detect them. One of the most studied protocols that contains the core of the idea is known as BB84 [129],
and reads as follows:

∙ Alice uses the random number generator to pick either a𝐻𝑉 or a 45◦ polarization basis. She encodes
the first bit of information in the chosen basis, records both bit and basis, and sends the photon to Bob.

∙ Bob uses his random number generator to pick either a 𝐻𝑉 or a 45◦ polarization basis. He detects
the incoming photon and notes the outcome and the basis chosen.

∙ Alice and Bob reveal publicly the choice of basis made for each transmission. They keep only the bits
that correspond to the cases where they chose the same basis.

∙ Alice and Bob “sacrifice”, or reveal publicly, a significant fraction of the bits that they now share and
perform some statistical analysis on them. They know that if the quantum bit error rate (QBER),
defined as the fraction of bits that differ, rises above a certain value provided by security proofs, then
the communication was hacked and they have to abort the protocol [131, 132];

∙ If the protocol was securely executed the unrevealed shared bits are used to create a secret key.

This simple scheme relies on the no cloning theorem [133, 134, 135], which states that it is not possible
to perfectly clone a quantum state in quantum mechanics. This in turn implies that an eavesdropper, when
trying to tamper with the communication, will inevitably leave a mark that can be traced and detected. Thus,
QKD in principle provides a scheme that is secured by the laws of physics, rather than by the complexity
of inverting complicated functions [136, 137].

A recent trend of work has initiated the study of the effects of gravity on the propagation of
photons between different users located at different heights in the gravitational potential of the Earth
[43, 44, 57, 105, 58, 138, 59]. The core idea is to model photons and excitations of a quantum field in
(weakly) curved spacetime. Gravitational redshift is one of the key effects that modify the quantum state
of the photons. Since standard quantum information protocols require stability of the state during free
space propagation (ignoring, say, sources of noise or decoherence), it becomes evident that quantification
of gravitational effects can inform on the need, or lack thereof, of keeping track of their impact.

Among the growing literature on this topic there are studies that investigate the effects of gravity on
30 After Chinese philosopher Mo Di – latinized as Micius (c. 470 - c. 391 BC).
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quantum communication [43, 62], quantum key distribution [139, 140], quantum illumination [141, 142]
to name a few. In general, it is clear that nontrivial modifications of standard protocols are predicted and
it has even been argued that the effects need not be small [43]. As an example, one can consider a simple
QKD protocol between Alice and Bob and attempt to evaluate the overall effect of gravity on a key figure
of merit known as the quantum bit error rate (QBER). For a brief overview of the key idea behind QKD
see the Panel ‘Quantum Key Distribution’ below.

Protocols for securely sharing a key are almost always studied using quantum mechanics alone.
Nevertheless, it is both of fundamental interest and of practical concern to assess the influence of
relativistic features on quantum communication protocols, including QKD. Preliminary work has been
performed in this direction providing a positive answer: the QBER is predicted to be affected, in ideal
conditions, even in the case of weak gravity as that found on Earth or in neighbouring space. This
conclusion has been obtained in the literature by studying a specific simple protocol [43]. There, a set of
steps devised to establish a maximally entangled state between two memories located at different heights
is executed. The key step is the interference of two identical photons at a 50 ∶ 50 beamsplitter, where one
photon has been propagating on Earth while the other arrives from the source located somewhere above. If
the two photons are not identical, a standard entanglement swapping scheme will not ultimately provide a
maximally entangled state shared by the two users, but instead a mixed state where the mixedness depends
on the gravitational redshift [143, 144]. While the effects can be made extremely small by appropriately
choosing the free parameters, photons that are defined by a frequency distribution that is extremely peaked
can suffer effects that lead to a non-negligible effect on the QBER. It has been shown that for Gaussian-
shaped photon frequency distributions with few hundred KHz bandwidths one can expect a QBER∼ 1%
purely as a result of gravitational effects. Note that, while in general the magnitude of the effect will
strongly depend on optimization of all parameters, including the specific choice of protocol, the fact
that an effect exists in the first place is due solely to photon mismatch. Therefore, any protocol that
requires quantum interference between photons that are produced at different heights in a gravitational
field will in general witness an effect. Particular setups, such as those including systems travelling with
relative velocity with respect to each other and thus introducing additional Doppler shifts, can experience
a compensation and therefore cancellation of the total effect.

3.2. Sensing
In relativistic quantum metrology, we are interested in estimating parameters encoded in the evolution
of quantum states of a quantum field as they propagate through curved spacetime. Here, the process
in which the measurement of a physical parameter is performed by means of quantum phenomena is
referred to as sensing [145]. The interest in the topic has promoted a growing literature in the field and
the development of novel tools such as those briefly mentioned here. The specific aim is to employ the
information encoded in the deformation of wave packets of light as the propagate in curved spacetime to
perform sensing protocols for the measurement of relevant physical parameters [44, 105].

Among the possible schemes and implementations, an interesting case is that consisting of two-
mode entangled states that are exchanged between users placed at different locations in curved spacetime
with the ambition of estimating relevant parameters, such as the Schwarzschild radius of the Earth or
the distance between source and receiver [44]. The sender, Alice, prepares and sends a pulse of light
to the receiver, Bob, who will compare it with the expected one. Propagation in curved spacetime
can then be modelled in first approximation as two beamsplitting operations acting independently on
each mode, which is mixed with an orthogonal one that cannot be measured. The problem is thus
consisting of four modes (𝑏1𝑏2𝑐1𝑐2), of which Alice can manipulate only (𝑏1𝑏2), i.e., wavepackets that
are centred around the frequencies 𝜔1 and 𝜔2, for which she prepares a two-mode squeezed state with
initial reduced covariance matrix 𝝈𝑏1𝑏2(𝑟) = 𝑺TMS(𝑟)𝑺

†
TMS(𝑟) defined in Box 4. As presented in the

previous section and analogously to Box 5, the orthogonal modes 𝑐1 and 𝑐2 are inaccessible and the
effects of propagation between Alice and Bob on the modes 𝑏1 and 𝑏2 can be modelled as two mode-
mixing operations 𝑺BS(𝜃) = 𝑹(𝜃)⊕𝑹(𝜃) acting on each pair 𝑏1, 𝑐1 and 𝑏2, 𝑐2 independently. The angle
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𝜃 can (and, in general, will) be different as explained before.
We consider that the orthogonal modes are initially in the vacuum state for simplicity of presentation,

which means that their initial reduced covariance matrix 𝝈𝑐1𝑐20 = 14 where 𝟙4 is the 4× 4 identity matrix.
We define our operator vector as 𝕏 ∶= (𝑏̂1, 𝑏̂2, 𝑐1, 𝑐2, 𝑏̂

†
1, 𝑏̂

†
2, 𝑐

†
1 , 𝑐

†
2). Then, the full channel 𝑺 full(𝜃1, 𝜃2)

reads in matrix form

𝑺full(𝜃1, 𝜃2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos 𝜃1 0 sin 𝜃1 0 0 0 0 0
0 cos 𝜃2 0 sin 𝜃2 0 0 0 0

− sin 𝜃1 0 cos 𝜃1 0 0 0 0 0
0 − sin 𝜃2 0 cos 𝜃2 0 0 0 0
0 0 0 0 cos 𝜃1 0 sin 𝜃1 0
0 0 0 0 0 cos 𝜃2 0 sin 𝜃2
0 0 0 0 − sin 𝜃1 0 cos 𝜃1 0
0 0 0 0 0 − sin 𝜃2 0 cos 𝜃2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (40)

while the initial and final full covariance matrices 𝝈full(𝑟) and 𝝈full
𝜃1,𝜃2

(𝑟) of the system respectively read

𝝈full(𝑟) =

⎛

⎜

⎜

⎜

⎝

cosh(2𝑟)12 0 sinh(2𝑟)𝝈y 0
0 12 0 0

sinh(2𝑟)𝝈y 0 cosh(2𝑟)12 0
0 0 0 12

⎞

⎟

⎟

⎟

⎠

, 𝝈full
𝜃1,𝜃2

(𝑟) = 𝑺full(𝜃1, 𝜃2)𝝈full(𝑟)𝑺full†(𝜃1, 𝜃2). (41)

Here, 𝝈y is one of the Pauli matrices. Once the full final state 𝝈full
𝜃1,𝜃2

(𝑟) is computed following this
procedure, one traces over the ancillary modes 𝑐1 and 𝑐2 by simply removing the corresponding rows and
columns obtaining the final reduced state 𝝈𝑏1,𝑏2𝜃1,𝜃2

(𝑟) of modes 𝑏1, 𝑏2. Finally, we can exploit the fidelity in
the covariance matrix formalism as defined in (13) to find the QFI. This can be done for single-parameter
estimation when it occurs that 𝜃1 = 𝜃2 ≡ 𝜃. In turn, this provides a bound on the estimation error.

3.3. Testing fundamental theories of Nature
As a last broad application of the tools discussed here we mention the possibility of testing our
fundamental theories of Nature. General relativity and quantum mechanics in particular are well
established within their respective domains of validity. Nevertheless, it is commonly believed that at
very high energies, or very small length scales, quantum gravitational effects should appear [39]. In
our work we do not attempt to study such effects but we note that interesting information can still be
extracted at the energy and length scales where quantum field theory in curved spacetime is believed to
apply. Instead, we offer a brief overview on a few potential applications for testing new physics.

Testing via interferometry—In the past few decades it has become evident that interferometric setups
have the potential for revolutionizing experimental investigation of many phenomena due to the very
high precisions that can be reached [146, 147]. Interferometers, whether of light or matter, have now
been proposed as key instruments in a myriad of experiments, such as MAcroscopic Quantum ResOnator
(MAQRO) [148], Laser Interferometer Space Antenna (LISA) [149], and Atomic Experiment for Dark
Matter and Gravity Exploration in Space (AEDGE) [150]. We believe that interferometric detection of
the modifications of the quantum state of light discussed in this work will be the core approach to the
different avenues addressed below.

Quantum field theory in curved spacetime—Our results depend on the validity of quantum field theory
in curved spacetime. Therefore, probing the validity of the transformation (39) for a few modes of light
and for different redshifts 𝜒 (i.e., different configurations of the Alice-Bob positioning) can be used to
test the theory. Multimode mixing can induce quantum interference [60], and it has even been shown
that it can induce Hong-Ou-Mandel-like quantum interference [59]. The conditions necessary for such
phenomena to manifest can be obtained, for example, by engineering the input modes 𝐴̂𝜔𝑛 to have multiple
peaks that alternate. In principle, such photons could be generated using optical parametric oscillators
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[151, 152]. From the formalism presented here it should also become evident that single bell-shaped
modes that do not overlap before the transformation is induced lead to the destruction of the interference
effect sought after [59]. Successful experimental detection of this quantum interference effect would
support the validity of quantum field theory in curved spacetime, at least in the weak curvature regime
(such as that of the Earth). This would improve our current understanding of the theory which lacks
experimental corroboration regardless of the many signature theoretical predictions put forward [65, 66].

Testing Equivalence Principles—Equivalence Principles are foundational guidelines for the develop-
ment of theories of gravity [64, 4]. The Einstein Equivalence Principle (EEP) in particular states that
the laws of physics in curved spacetime reduce to those of special relativity locally (i.e., in regions of
spacetime that are “small enough”) [64, 4]. The EEP is a fundamental statement about the most basic
workings of Nature and it is therefore a matter of fundamental interest to know if and in which regimes
this principle holds. To date, many experiments have been performed to test the EEP in a classical setup,
and new experiments are planned [153, 154, 155]. An even more compelling problem is the validity of
the EEP in the quantum domain. More concretely, it is of great interest to verify this principle within
a framework where both gravitational and quantum mechanical features of physical systems play a role.
It is usually implicitly assumed that the EEP does apply. Nevertheless, there are different arguments in
favour of testing it for free falling quantum systems, which would be greatly beneficial for our current
understanding of quantum systems in gravitational fields [153].

The effects described here can be used to develop new ways of testing the EEP. However, we want
to emphasize that they do not solve the problem of the EEP for gravitating quantum matter [156]. The
physical principles described here set themselves apart from many experiments that have been proposed
and already performed, since we would not use massive particles [154], but photons (which are modelled
as massless excitations of a quantum field). Photons can be engineered to propagate (i.e., “free fall”)
between two users at different heights in the gravitational potential of the Earth or another planet, and
the shift that is induced can be measured using interferometric setups [61, 138]. The degree of control
over photons and the high precisions that modern photonics have reached very high levels and this would
enable the possiblity to test the universality of the gravitational redshift as a function, for example, of the
initial (quantum) state of the photon, of the motion of photons (i.e., of the parameters of the trajectory),
and of the polarization. Gravitational redshift can be derived from first principles as a direct consequence
of the EEP applied to two accelerated objects that exchange electromagnetic pulses [4]. Therefore, we
conclude that our tools can provide yet another way to explore and verify the EEP.

Modified and Novel Theories of Gravity—Advanced and new theories of Nature can predict deviations
from those of general relativity to be expected to manifest within specific (usually high-energy or small-
scale) regimes. Many proposals have now been put forward to test different aspects of novel physics within
space-based experiments [157, 158]. A key aspect of the space-based setup is that photons that propagate
through spacetime can witness deviations from predicted kinematics. For example, these effects might
arise as a consequence of asymmetries due to anisotropies of the background spacetimes, of the presence
of ultraviolet cutoffs in the field theory or of the coarse graining of spacetime [155]. Regardless of the
particular effect that might be of interest, propagation through a long baseline can lead to the cumulation
of effects and therefore an overall detectable signal. In general the effects might be extremely small, which
is why one expects that large distances must be traversed by photons before a successful measurement
can be made. Luckily, as is evident from the fact that the light of distant stars can reach us, achieving
(very) long distances for photons for these purposes is possible at least in principle.

Neutrino Physics—Mode mixing is an ubiquitous operation in quantum optics [61], as well as a key
physical phenomenon in many areas of physics, such as nanomechanics [159], surface acoustic waves
[160] or plasmonics [161] to name a few. Neutrino physics is also an area where mode mixing has played
a revolutionary role that has changed our understanding of high-energy physical processes. Neutrinos
were originally postulated to be massless, a property that was successively found to be incompatible with
experiments. In fact, neutrinos were found to “mix flavours” [162, 163], and this can be explained through
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quantum field theory only if they are massive. This phenomenon, known as neutrino oscillations31, is a
form of mode mixing during which three distinct operators (one for each flavour) are combined unitarily
into three new ones [162]. Three-mode mixing, in particular, can be thought of as a tritter [112].

Neutrino oscillations

Neutrino physics is a branch of high energy physics [162]. Here we are interested only in the phenomenon
called neutrino oscillations, which occurs when the neutrinos are massive. In this case, there are three
neutrino field operators 𝜈̂𝑘 that mix via a 3 × 3 unitary matrix 𝑼mix, which is a function of three mixing
angles 𝜃12, 𝜃23 and 𝜃13, as well as a Dirac-phase 𝛿. Let 𝕏̂r ∶= (𝜈̂1, 𝜈̂2, 𝜈̂3)Tp and 𝕏̂′

r ∶= (𝜈̂′1, 𝜈̂
′
2, 𝜈̂

′
3)

Tp, where
the unprimed operators 𝜈̂𝑘 determine the left handed components of the neutrino fields, while the primed
operators 𝜈̂′𝑘 are determined by the flavour degrees of freedom [162]. We have

𝕏̂′
r = 𝑼mix𝕏̂r, where 𝑼mix =

⎛

⎜

⎜

⎝

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒−𝑖𝛿
−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒𝑖𝛿 𝑐23𝑐13

⎞

⎟

⎟

⎠

.

It is immediate to verify that 𝑼mix𝑼
†
mix = 1. This matrix is known as tritter in quantum optics [112], and

is another special case of the general matrix 𝑼 that appears in (39).

Physical neutrinos, like every other realistic particle, will not have infinitely sharp momentum but
will be best characterized by a wavepacket of ideal sharp-momentum field excitations. This will require
updating the mathematical technology developed for ideal sharp-momentum particles in order to take
care of all realistic features. Our results can help in addressing some of the issues, including adding the
effects of weak gravitational backgrounds on the propagation of the neutrinos as wave-packets.

Astrophysics—Finally, we note here that the electromagnetic field is ubiquitous since light and other
forms of electromagnetic radiation are constantly propagating in all directions. The sources can be very
mundane objects, such as man-made devices on Earth, as well as the Sun. Light emitted by impossibly
distant objects can also reach the globe that we live on, thus being detected by our telescopes and
observatories. Indeed astrophysics and astronomy are largely based on the ability to detect (excitations
of) the electromagnetic field in a variety of frequency ranges, from which information is extracted.

The redshift of astrophysical and astronomical entities is well established theoretically. Recently,
attention has been turned toward the verification of the predictions by direct analysis of the data [164, 165].
Detected light carries crucial information on a wide variety of properties of sources, from mass-to-radius
ratio [18, 24], to magnetic fields [166]. Redshift in this context is usually considered from a classical
perspective in the sense of ignoring the quantum properties of light. Nevertheless, as we have argued
here, gravitational redshift of realistic (quantum) photons can add significant new possibilities to the
measurements performed based on interferometric setups as compared to classical light. We envision that
applying the techniques presented in this work could provide additional channels from which information
regarding sources can be extracted.

4. Considerations and Outlook
The material presented here is developed as a comprehensive review of the previous work on this topic.
To date, the studies reviewed have been purely theoretical in nature, and more work is necessary to
fully characterize the overall effect, as well as to include it in a practical scheme where it can be gauged
against competing effects. If one does not wish to measure and employ the effect specifically, but cannot
fully compensate for it because of external constraints, it would be desirable to embed the effects of the
gravitational redshift in an overall expression that includes all relevant sources of noise, loss, etc... One
31 First postulated theoretically by Italian physicist Bruno Pontecorvo (22 August 1913 – 24 September 1993).
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such expression is called the radar equation, which has been developed for this purpose [167, 114]. The
aim of this quantity is to provide an effective rate of incident photons on the target given a variety of
impediments: scattering of photons, turbulence, weather conditions, beam widening, pointing errors to
name a few. Effects due to gravitational redshift, in particular when a quantum protocol is employed,
could be included in such an expression.

It is also of great interest to actively attempt to measure the effects of gravitational redshift for purposes
of foundational experiments or sensing. A promising avenue to implement the tests discussed above is
the use of Cubesats and other similar crafts [168, 169, 170] that are now being considered for use in
space-based classical [171, 172, 173] and quantum experiments [174, 175, 176]. In this case, small and
relatively inexpensive satellites can be deployed at a fraction of the cost of conventional missions, where
the craft itself can be potentially loaded with all necessary equipment to perform (reasonable) long-range
experiments. One idea is to use a collection of such satellites as sources of photons to be detected on
Earth [158]. These satellites have short lives compared to their traditional counterparts but can allow
for proof-of-principle experiments to be performed, which can in turn be used to support planning and
development of larger scale missions.

Finally, states that exhibit quantum coherence can be used as resources for quantum computing [36].
It remains an open question how this final aspect can be used constructively in concrete applications.

5. Conclusions
We have reviewed an approach to study photons that propagate in curved spacetime between a sender and
a receiver. Our main objective was to provide the formalism that allows to model the transformation of
the photon spectrum distribution, as well as its quantum state, when the two users witness differing local
gravitational effects. We have reviewed the existing work that initiated this approach and we extended it
to include 3 + 1-dimensions. We have focused on photons that are strongly confined along the direction
of propagation, for which the evolution of the wavepackets can be significantly simplified. It is possible
to effectively consider a one dimensional problem for all purposes, which allows to model the photon
spectrum using the frequency variable alone. In particular, it has been found that the gravitational redshift
present deforms the wavepacket in a non-trivial way, meaning that a rigid shift of the whole spectrum
occurs together with a deformation. It has also been shown that the quantum state of the photon is
effectively subject to a mode-mixing operation that exchanges excitations between different modes of the
electromagnetic field. The intensity of this mixing depends directly on the strength of the gravitational
redshift. Particle creation due to dynamical backgrounds or other effects has been neglected, although it
can be included if required by the specific scenario. Such addition is expected to significantly increase the
complexity of the analysis. Furthermore, we have discussed potential applications of the predictions of
this work, such as sensing and changes in the QBER of a QKD protocol, as well as potential novel insights
to be gained in advanced modern theories, such as modified theories of gravity and neutrino physics. We
leave it to future work to explore such avenues. Finally, we note that testing the existence of this effect
can contribute in demonstrating quantum field theory in (weakly) curved spacetime, and therefore add
new insight to our understanding of physics at the overlap of quantum mechanics and general relativity.
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